An interior penalty variational multiscale method for high Reynolds number flows

被引:0
|
作者
Burman, Erik [1 ]
机构
[1] Ecole Polytech Fed Lausanne, CMCS, IACS, CH-1015 Lausanne, Switzerland
来源
Numerical Mathematics and Advanced Applications | 2006年
关键词
D O I
10.1007/978-3-540-34288-5_76
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a framework using CO interior penalty methods for computations of the Navier-Stokes equations at high Reynolds number. The method is motivated by a formal scale separation argument and then justified by a priori error estimates. As a possible measure of solution quality we propose to monitor the ratio between the artificial dissipation induced by the numerical method and the computed physical dissipation. We prove that for our method the artificial dissipation serves as an a posteriori error estimator.
引用
收藏
页码:779 / 787
页数:9
相关论文
共 50 条
  • [1] A spectral quadrilateral multidomain penalty method model for high Reynolds number incompressible stratified flows
    Escobar-Vargas, J. A.
    Diamessis, P. J.
    Sakai, T.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 75 (06) : 403 - 425
  • [2] TWO-LEVEL ITERATION PENALTY AND VARIATIONAL MULTISCALE METHOD FOR STEADY INCOMPRESSIBLE FLOWS
    Zhang, Yuqing
    Li, Yuan
    An, Rong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (03): : 607 - 627
  • [3] A superconsistent collocation method for high Reynolds number flows
    De l'Isle, Francois
    Owens, Robert G.
    COMPUTERS & FLUIDS, 2023, 259
  • [4] A continuous interior penalty method for viscoelastic flows
    Bonito, Andrea
    Burman, Erik
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (03): : 1156 - 1177
  • [5] Interior penalty variational multiscale method for the incompressible Navier-Stokes equation: Monitoring artificial dissipation
    Burman, Erik
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (41-44) : 4045 - 4058
  • [6] Computation of high Reynolds number flows by a deterministic vortex method
    Yang, Ruey-Jen
    Jeng, Chia-Jun
    Wu, Chien-Hsien
    Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch'eng Hsuebo Pao, 2003, 24 (04): : 407 - 416
  • [7] Lattice Boltzmann Method for the Simulation of High Reynolds Number Flows
    Liu, Qiang
    Xie, Wei
    Qiu, Liaoyuan
    Xie, Xueshen
    ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 : 352 - 356
  • [8] Variational multiscale method for nonequilibrium plasma flows
    Trelles, Juan Pablo
    Modirkhazeni, S. Mahnaz
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 282 : 87 - 131
  • [9] Adaptive variational multiscale method for bingham flows
    Riber, S.
    Valette, R.
    Mesri, Y.
    Hachem, E.
    COMPUTERS & FLUIDS, 2016, 138 : 51 - 60
  • [10] An updated interactive boundary layer method for high Reynolds number flows
    Alvarez, F
    Moraga, N
    Cousteix, J
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 66 (02) : 191 - 213