Study of the L-mode tokamak plasma "shortfall" with local and global nonlinear gyrokinetic δf particle-in-cell simulation

被引:12
作者
Chowdhury, J. [1 ]
Wan, Weigang [1 ]
Chen, Yang [1 ]
Parker, Scott E. [1 ]
Groebner, Richard J. [2 ]
Holland, C. [3 ]
Howard, N. T. [4 ]
机构
[1] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[2] Gen Atom Co, San Diego, CA 92186 USA
[3] Univ Calif San Diego, La Jolla, CA 92093 USA
[4] ORISE, Oak Ridge, TN 37831 USA
关键词
ZONAL FLOW; TURBULENCE; DRIVEN;
D O I
10.1063/1.4901031
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The delta f particle-in-cell code GEM is used to study the transport "shortfall" problem of gyrokinetic simulations. In local simulations, the GEM results confirm the previously reported simulation results of DIII-D [Holland et al., Phys. Plasmas 16, 052301 (2009)] and Alcator C-Mod [Howard et al., Nucl. Fusion 53, 123011 (2013)] tokamaks with the continuum code GYRO. Namely, for DIII-D the simulations closely predict the ion heat flux at the core, while substantially underpredict transport towards the edge; while for Alcator C-Mod, the simulations show agreement with the experimental values of ion heat flux, at least within the range of experimental error. Global simulations are carried out for DIII-D L-mode plasmas to study the effect of edge turbulence on the outer core ion heat transport. The edge turbulence enhances the outer core ion heat transport through turbulence spreading. However, this edge turbulence spreading effect is not enough to explain the transport underprediction. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:11
相关论文
共 41 条
[1]   A verification of the gyrokinetic microstability codes GEM, GYRO, and GS2 [J].
Bravenec, R. V. ;
Chen, Y. ;
Candy, J. ;
Wan, W. ;
Parker, S. .
PHYSICS OF PLASMAS, 2013, 20 (10)
[2]   Linear and nonlinear verification of gyrokinetic microstability codes [J].
Bravenec, R. V. ;
Candy, J. ;
Barnes, M. ;
Holland, C. .
PHYSICS OF PLASMAS, 2011, 18 (12)
[3]   An Eulerian gyrokinetic-Maxwell solver [J].
Candy, J ;
Waltz, RE .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 186 (02) :545-581
[4]   Benchmarking gyrokinetic simulations in a toroidal flux-tube [J].
Chen, Y. ;
Parker, S. E. ;
Wan, W. ;
Bravenec, R. .
PHYSICS OF PLASMAS, 2013, 20 (09)
[5]   A δf particle method for gyrokinetic simulations with kinetic electrons and electromagnetic perturbations [J].
Chen, Y ;
Parker, SE .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 189 (02) :463-475
[6]   Gyrokinetic turbulence simulations with kinetic electrons [J].
Chen, Y ;
Parker, S .
PHYSICS OF PLASMAS, 2001, 8 (05) :2095-2100
[7]   Electromagnetic gyrokinetic δf particle-in-cell turbulence simulation with realistic equilibrium profiles and geometry [J].
Chen, Yang ;
Parker, Scott E. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 220 (02) :839-855
[8]   Coarse-graining the electron distribution in turbulence simulations of tokamak plasmas [J].
Chen, Yang ;
Parker, Scott E. ;
Rewoldt, Gregory ;
Ku, Seung-Hoe ;
Park, Gun-Young ;
Chang, C-S .
PHYSICS OF PLASMAS, 2008, 15 (05)
[9]   Secondary instability in drift wave turbulence as a mechanism for zonal flow and avalanche formation [J].
Diamond, PH ;
Champeaux, S ;
Malkov, M ;
Das, A ;
Gruzinov, I ;
Rosenbluth, MN ;
Holland, C ;
Wecht, B ;
Smolyakov, AI ;
Hinton, FL ;
Lin, Z ;
Hahm, TS .
NUCLEAR FUSION, 2001, 41 (08) :1067-1080
[10]   The global version of the gyrokinetic turbulence code GENE [J].
Goerler, T. ;
Lapillonne, X. ;
Brunner, S. ;
Dannert, T. ;
Jenko, F. ;
Merz, F. ;
Told, D. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (18) :7053-7071