Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts

被引:428
作者
Von Zglinicki, T [1 ]
Pilger, R [1 ]
Sitte, N [1 ]
机构
[1] Humboldt Univ, Inst Pathol, Charite, D-10098 Berlin, Germany
关键词
telomeres; oxidative stress; fibroblasts; senescence; life-span; aging; end replication problem; free radical;
D O I
10.1016/S0891-5849(99)00207-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Telomere shortening triggers replicative senescence in human fibroblasts. The inability of DNA polymerases to replicate a linear DNA molecule completely (the end replication problem) is one cause of telomere shortening. Other possible causes are the formation of single-stranded overhangs at the end of telomeres and the preferential vulnerability of telomeres to oxidative stress. To elucidate the relative importance of these possibilities, amount and distribution of telomeric single-strand breaks, length of the G-rich overhang, and telomere shortening rate in human MRC-5 fibroblasts were measured. Treatment of nonproliferating cells with hydrogen peroxide increases the sensitivity to S1 nuclease in telomeres preferentially and accelerates their shortening by a corresponding amount as soon as the cells proliferate. A reduction of the activity of intracellular peroxides using the spin trap alpha-phenyl-t-butyl-nitrone reduces the telomere shortening rate and increases the replicative life span. The length of the telomeric single-stranded overhang is independent of DNA damaging stresses, but single-strand breaks accumulate randomly all along the telomere after alkylation. The telomere shortening rate and the rate of replicative aging can be either accelerated or decelerated by a modification of the amount of oxidative stress. Quantitatively, stress-mediated telomere damage contributes most to telomere shortening under standard conditions. (C) 2000 Elsevier Science Inc.
引用
收藏
页码:64 / 74
页数:11
相关论文
共 28 条
[1]   EVIDENCE FOR A CRITICAL TELOMERE LENGTH IN SENESCENT HUMAN FIBROBLASTS [J].
ALLSOPP, RC ;
HARLEY, CB .
EXPERIMENTAL CELL RESEARCH, 1995, 219 (01) :130-136
[2]   EFFECT OF OXYGEN AND VITAMIN-E ON LIFESPAN OF HUMAN DIPLOID CELLS INVITRO [J].
BALIN, AK ;
GOODMAN, DBP ;
RASMUSSEN, H ;
CRISTOFALO, VJ .
JOURNAL OF CELL BIOLOGY, 1977, 74 (01) :58-67
[3]   Extension of life-span by introduction of telomerase into normal human cells [J].
Bodnar, AG ;
Ouellette, M ;
Frolkis, M ;
Holt, SE ;
Chiu, CP ;
Morin, GB ;
Harley, CB ;
Shay, JW ;
Lichtsteiner, S ;
Wright, WE .
SCIENCE, 1998, 279 (5349) :349-352
[4]   DETECTION OF PICOMOLE LEVELS OF HYDROPEROXIDES USING A FLUORESCENT DICHLOROFLUORESCEIN ASSAY [J].
CATHCART, R ;
SCHWIERS, E ;
AMES, BN .
ANALYTICAL BIOCHEMISTRY, 1983, 134 (01) :111-116
[5]   SENESCENCE-LIKE GROWTH ARREST INDUCED BY HYDROGEN-PEROXIDE IN HUMAN-DIPLOID FIBROBLAST F65 CELLS [J].
CHEN, Q ;
AMES, BN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (10) :4130-4134
[6]   Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization [J].
Counter, CM ;
Hahn, WC ;
Wei, WY ;
Caddle, SD ;
Beijersbergen, RL ;
Lansdorp, PM ;
Sedivy, JM ;
Weinberg, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14723-14728
[7]   Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase [J].
Dionne, I ;
Wellinger, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (24) :13902-13907
[8]   Mammalian telomeres end in a large duplex loop [J].
Griffith, JD ;
Comeau, L ;
Rosenfield, S ;
Stansel, RM ;
Bianchi, A ;
Moss, H ;
de Lange, T .
CELL, 1999, 97 (04) :503-514
[9]   TELOMERES SHORTEN DURING AGING OF HUMAN FIBROBLASTS [J].
HARLEY, CB ;
FUTCHER, AB ;
GREIDER, CW .
NATURE, 1990, 345 (6274) :458-460
[10]   Control of telomere growth by interactions of RAP1 with the most distal telomeric repeats [J].
Krauskopf, A ;
Blackburn, EH .
NATURE, 1996, 383 (6598) :354-357