Randomized game semantics for semi-fuzzy quantifiers

被引:13
作者
Fermueller, Christian G. [1 ]
Roschger, Christoph [1 ]
机构
[1] Vienna Univ Technol, Inst Comp Languages, Theory & Log Grp, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Fuzzy quantifiers; semantic games; random choice; LOGICS;
D O I
10.1093/jigpal/jzt049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We take up the challenge to extract particular truth functions for fuzzy quantifiers from a game semantic framework. To this aim, we start with a fresh look at Hintikka's evaluation game for classical first-order logic and show that randomizing payoffs in that classical game results in a characterization of so-called weak Aukasiewicz logic. A further step of generalization, considering more than one formula as available for attack at a given state of the game, leads to Giles's game for full Aukasiewicz logic. Finally, we extend this framework to random choices of witnesses for quantified statements. This allows us to characterize two families of extensions of Aukasiewicz logic with different semi-fuzzy proportionality quantifiers that include candidate models for vague natural language quantifiers like about half.
引用
收藏
页码:413 / 439
页数:27
相关论文
共 43 条
[1]  
Aguzzoli S, 2009, LECT NOTES COMPUT SC, V5590, P875, DOI 10.1007/978-3-642-02906-6_75
[2]  
[Anonymous], 1974, Formal Philosophy
[3]  
Barker C, 2002, LINGUIST PHILOS, V25, P1, DOI 10.1023/A:1014346114955
[4]   GENERALIZED QUANTIFIERS AND NATURAL-LANGUAGE [J].
BARWISE, J ;
COOPER, R .
LINGUISTICS AND PHILOSOPHY, 1981, 4 (02) :159-219
[5]   A new criterion for comparing fuzzy logics for uncertain reasoning [J].
Bennett A.D.C. ;
Paris J.B. ;
Vencovská A. .
Journal of Logic, Language and Information, 2000, 9 (1) :31-63
[6]  
Ciabattoni AA, 2005, LECT NOTES COMPUT SC, V3452, P496
[7]  
Cintula P., 2011, UNDERSTANDING VAGUEN
[8]  
Cintula P, 2009, LOGIC EPISTEMOL UNIT, V15, P117
[9]  
Esteva F, 2003, J LOGIC COMPUT, V13, P531, DOI 10.1093/logcom/13.4.532
[10]   Residuated fuzzy logics with an involutive negation [J].
Esteva, F ;
Godo, L ;
Hájek, P ;
Navara, M .
ARCHIVE FOR MATHEMATICAL LOGIC, 2000, 39 (02) :103-124