On some conformally invariant fully nonlinear equations, II. Liouville, Harnack and Yamabe

被引:86
作者
Li, Aobing [1 ]
Li, Yan Yan [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
关键词
D O I
10.1007/BF02588052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:117 / 154
页数:38
相关论文
共 65 条
[1]   On the Yamabe problem and the scalar curvature problems under boundary conditions [J].
Ambrosetti, A ;
Li, YY ;
Malchiodi, A .
MATHEMATISCHE ANNALEN, 2002, 322 (04) :667-699
[2]  
[Anonymous], P INT C MATH ZUR 199
[3]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[4]  
Aubin T., 1998, Some Nonlinear Problems in Riemannian Geometry
[5]  
Brendle S, 2004, CALC VAR PARTIAL DIF, V20, P399, DOI 10.1007/s00526-003-0234-9
[6]  
BRYATN R, 2003, EXTERIOR DIFFERENTIA
[7]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[8]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[9]  
Chang S.-Y. A., 2003, NEW STUD ADV MATH, V2, P43
[10]   On a class of locally conformally flat manifolds [J].
Chang, SYA ;
Hang, FB ;
Yang, PC .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (04) :185-209