Occlusion-Aware R-CNN: Detecting Pedestrians in a Crowd

被引:339
作者
Zhang, Shifeng [1 ,2 ]
Wen, Longyin [3 ]
Bian, Xiao [3 ]
Lei, Zhen [1 ,2 ]
Li, Stan Z. [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Ctr Biometr & Secur Res, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] GE Global Res, Niskayuna, NY USA
[4] Macau Univ Sci & Technol, Macau, Peoples R China
来源
COMPUTER VISION - ECCV 2018, PT III | 2018年 / 11207卷
关键词
Pedestrian detection; Occlusion-aware; Convolutional network; Structure information; Visibility prediction; SYSTEM;
D O I
10.1007/978-3-030-01219-9_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pedestrian detection in crowded scenes is a challenging problem since the pedestrians often gather together and occlude each other. In this paper, we propose a new occlusion-aware R-CNN (OR-CNN) to improve the detection accuracy in the crowd. Specifically, we design a new aggregation loss to enforce proposals to be close and locate compactly to the corresponding objects. Meanwhile, we use a new part occlusion-aware region of interest (PORoI) pooling unit to replace the RoI pooling layer in order to integrate the prior structure information of human body with visibility prediction into the network to handle occlusion. Our detector is trained in an end-to-end fashion, which achieves state-of-the-art results on three pedestrian detection datasets, i.e., CityPersons, ETH, and INRIA, and performs on-pair with the state-of-the-arts on Caltech.
引用
收藏
页码:657 / 674
页数:18
相关论文
共 73 条
[1]  
Angelova A., 2015, P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P BMVC 2015 P
[2]  
[Anonymous], 2016, CVPR, DOI DOI 10.1109/CVPR.2016.259
[3]  
[Anonymous], 2014, P 27 INT C NEURAL IN
[4]  
[Anonymous], 2016, CVPR
[5]  
[Anonymous], 2017, ICCV
[6]  
[Anonymous], 2005, ICCV
[7]   Seeking the strongest rigid detector [J].
Benenson, Rodrigo ;
Mathias, Markus ;
Tuytelaars, Tinne ;
Van Gool, Luc .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :3666-3673
[8]  
Benenson R, 2012, PROC CVPR IEEE, P2903, DOI 10.1109/CVPR.2012.6248017
[9]   Illuminating Pedestrians via Simultaneous Detection & Segmentation [J].
Brazil, Garrick ;
Yin, Xi ;
Liu, Xiaoming .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :4960-4969
[10]   A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection [J].
Cai, Zhaowei ;
Fan, Quanfu ;
Feris, Rogerio S. ;
Vasconcelos, Nuno .
COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 :354-370