Deep Temporal-Spatial Feature Learning for Motor Imagery-Based Brain-Computer Interfaces

被引:58
|
作者
Chen, Junjian [1 ,2 ]
Yu, Zhuliang [1 ,2 ]
Gu, Zhenghui [1 ,2 ]
Li, Yuanqing [1 ,2 ]
机构
[1] South China Univ Technol, Coll Automat Sci & Engn, Guangzhou 510641, Peoples R China
[2] Pazhou Lab, Guangzhou 510335, Peoples R China
基金
中国国家自然科学基金;
关键词
Electroencephalography; Training; Band-pass filters; Decoding; Feature extraction; Machine learning; Brain-computer interfaces; Motor imagery (MI); electroencephalography (EEG); deep learning; convolutional neural network (CNN); triplet loss; NEURAL-NETWORKS; EEG; CLASSIFICATION; EEG/MEG; FILTERS;
D O I
10.1109/TNSRE.2020.3023417
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motor imagery (MI) decoding is an important part of brain-computer interface (BCI) research, which translates the subject's intentions into commands that external devices can execute. The traditional methods for discriminative feature extraction, such as common spatial pattern (CSP) and filter bank common spatial pattern (FBCSP), have only focused on the energy features of the electroencephalography (EEG) and thus ignored the further exploration of temporal information. However, the temporal information of spatially filtered EEG may be critical to the performance improvement of MI decoding. In this paper, we proposed a deep learning approach termed filter-bank spatial filtering and temporal-spatial convolutional neural network (FBSF-TSCNN) for MI decoding, where the FBSF block transforms the raw EEG signals into an appropriate intermediate EEG presentation, and then the TSCNN block decodes the intermediate EEG signals. Moreover, a novel stage-wise training strategy is proposed to mitigate the difficult optimization problem of the TSCNN block in the case of insufficient training samples. Firstly, the feature extraction layers are trained by optimization of the triplet loss. Then, the classification layers are trained by optimization of the cross-entropy loss. Finally, the entire network (TSCNN) is fine-tuned by the back-propagation (BP) algorithm. Experimental evaluations on the BCI IV 2a and SMR-BCI datasets reveal that the proposed stage-wise training strategy yields significant performance improvement compared with the conventional end-to-end training strategy, and the proposed approach is comparable with the state-of-the-art method.
引用
收藏
页码:2356 / 2366
页数:11
相关论文
共 50 条
  • [31] Effects of Gaze Fixation on the Performance of a Motor Imagery-Based Brain-Computer Interface
    Meng, Jianjun
    Wu, Zehan
    Li, Songwei
    Zhu, Xiangyang
    FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 15
  • [32] Transfer learning algorithm design for feature transfer problem in motor imagery brain-computer interface
    Zhang, Yu
    Li, Huaqing
    Dong, Heng
    Dai, Zheng
    Chen, Xing
    Li, Zhuoming
    CHINA COMMUNICATIONS, 2022, 19 (02) : 39 - 46
  • [33] Motor Imagery Classification for Asynchronous EEG-Based Brain-Computer Interfaces
    Wu, Huanyu
    Li, Siyang
    Wu, Dongrui
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 527 - 536
  • [34] A cross-dataset adaptive domain selection transfer learning framework for motor imagery-based brain-computer interfaces
    Jin, Jing
    Bai, Guanglian
    Xu, Ren
    Qin, Ke
    Sun, Hao
    Wang, Xingyu
    Cichocki, Andrzej
    JOURNAL OF NEURAL ENGINEERING, 2024, 21 (03)
  • [35] Single Trial Variability in Brain-Computer Interfaces Based on Motor Imagery: Learning in the Presence of Labeling Noise
    Gouy-Pailler, Cedric
    Sebag, Michele
    Larue, Anthony
    Souloumiac, Antoine
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2011, 21 (02) : 148 - 157
  • [36] Motor Imagery Classification for Brain Computer Interface Using Deep Metric Learning
    Alwasiti, Haider
    Yusoff, Mohd Zuki
    Raza, Kamran
    IEEE ACCESS, 2020, 8 : 109949 - 109963
  • [37] Advanced TSGL-EEGNet for Motor Imagery EEG-Based Brain-Computer Interfaces
    Deng, Xin
    Zhang, Boxian
    Yu, Nian
    Liu, Ke
    Sun, Kaiwei
    IEEE ACCESS, 2021, 9 (09): : 25118 - 25130
  • [38] Review of solutions for the application of example of machine learning methods for Motor Imagery in correlation with Brain-Computer Interfaces
    Paszkiel, Szczepan
    Rojek, Ryszard
    Lei, Ningrong
    Castro, Maria Antonio
    PRZEGLAD ELEKTROTECHNICZNY, 2021, 97 (11): : 111 - 116
  • [39] USING AUTOENCODERS FOR FEATURE ENHANCEMENT IN MOTOR IMAGERY BRAIN-COMPUTER INTERFACES
    Helal, Mahmoud A.
    Eldawlatly, Seif
    Taher, Mohamed
    2017 13TH IASTED INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (BIOMED), 2017, : 89 - 93
  • [40] Calibration time reduction through local activities estimation in motor imagery-based brain-computer interfaces
    Togha, Mohammad Mahdi
    Salehi, Mohammad Reza
    Abiri, Ebrahim
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2020, 6 (02)