Alkyl Chain Length Effects of Polymer Donors on the Morphology and Device Performance of Polymer Solar Cells with Different Acceptors

被引:103
作者
Pang, Shuting [1 ]
Zhang, Ruiwen [1 ]
Duan, Chunhui [1 ]
Zhang, Song [2 ]
Gu, Xiaodan [2 ]
Liu, Xi [1 ]
Huang, Fei [1 ]
Cao, Yong [1 ]
机构
[1] South China Univ Technol, Inst Polymer Optoelect Mat & Devices, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China
[2] Univ Southern Mississippi, Sch Polymer Sci & Engn, Hattiesburg, MS 39406 USA
基金
美国国家科学基金会;
关键词
device performance; morphology; polymer donors; polymer solar cells; side chains; POWER-CONVERSION EFFICIENCY; MOLECULAR-WEIGHT; CONJUGATED POLYMER; DESIGN; NETWORK; VOLTAGE; CRYSTALLINITY; OPTIMIZATION; AGGREGATION; COPOLYMER;
D O I
10.1002/aenm.201901740
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of nonfullerene acceptors has brought polymer solar cells into a new era. Maximizing the performance of nonfullerene solar cells needs appropriate polymer donors that match with the acceptors in both electrical and morphological properties. So far, the design rationales for polymer donors are mainly borrowed from fullerene-based solar cells, which are not necessarily applicable to nonfullerene solar cells. In this work, the influence of side chain length of polymer donors based on a set of random terpolymers PTAZ-TPD10-Cn on the device performance of polymer solar cells is investigated with three different acceptor materials, i.e., a fullerene acceptor [70]PCBM, a polymer acceptor N2200, and a fused-ring molecular acceptor ITIC. Shortening the side chains of polymer donors improves the device performance of [70]PCBM-based devices, but deteriorates the N2200- and ITIC-based devices. Morphology studies unveil that the miscibility between donor and acceptor in blend films depends on the side chain length of polymer donors. Upon shortening the side chains of the polymer donors, the miscibility between the donor and acceptor increases for the [70]PCBM-based blends, but decreases for the N2200- and ITIC-based blends. These findings provide new guidelines for the development of polymer donors to match with emerging nonfullerene acceptors.
引用
收藏
页数:12
相关论文
共 82 条
[1]   Development of Novel Conjugated Donor Polymers for High-Efficiency Bulk-Heterojunction Photovoltaic Devices [J].
Chen, Junwu ;
Cao, Yong .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (11) :1709-1718
[2]   Efficient Nonfullerene Organic Solar Cells with Small Driving Forces for Both Hole and Electron Transfer [J].
Chen, Shangshang ;
Wang, Yuming ;
Zhang, Lin ;
Zhao, Jingbo ;
Chen, Yuzhong ;
Zhu, Danlei ;
Yao, Huatong ;
Zhang, Guangye ;
Ma, Wei ;
Friend, Richard H. ;
Chow, Philip C. Y. ;
Gao, Feng ;
Yan, He .
ADVANCED MATERIALS, 2018, 30 (45)
[3]   Alkyl Chain Regiochemistry of Benzotriazole-Based Donor Polymers Influencing Morphology and Performances of Non-Fullerene Organic Solar Cells [J].
Chen, Shangshang ;
Zhang, Lin ;
Ma, Chao ;
Meng, Dong ;
Zhang, Jianquan ;
Zhang, Guangye ;
Li, Zhengke ;
Chow, Philip C. Y. ;
Ma, Wei ;
Wang, Zhaohui ;
Wong, Kam Sing ;
Ade, Harald ;
Yan, He .
ADVANCED ENERGY MATERIALS, 2018, 8 (11)
[4]   A Synergetic Effect of Molecular Weight and Fluorine in All-Polymer Solar Cells with Enhanced Performance [J].
Chen, Shanshan ;
An, Yujin ;
Dutta, Gitish K. ;
Kim, Yiho ;
Zhang, Zhi-Guo ;
Li, Yongfang ;
Yang, Changduk .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (02)
[5]   Next-generation organic photovoltaics based on non-fullerene acceptors [J].
Cheng, Pei ;
Li, Gang ;
Zhan, Xiaowei ;
Yang, Yang .
NATURE PHOTONICS, 2018, 12 (03) :131-142
[6]  
Coffin RC, 2009, NAT CHEM, V1, P657, DOI [10.1038/NCHEM.403, 10.1038/nchem.403]
[7]   Design and Synthesis of Molecular Donors for Solution-Processed High-Efficiency Organic Solar Cells [J].
Coughlin, Jessica E. ;
Henson, Zachary B. ;
Welch, Gregory C. ;
Bazan, Guillermo C. .
ACCOUNTS OF CHEMICAL RESEARCH, 2014, 47 (01) :257-270
[8]   Recombination in polymer-fullerene bulk heterojunction solar cells [J].
Cowan, Sarah R. ;
Roy, Anshuman ;
Heeger, Alan J. .
PHYSICAL REVIEW B, 2010, 82 (24)
[9]   Achieving Over 15% Efficiency in Organic Photovoltaic Cells via Copolymer Design [J].
Cui, Yong ;
Yao, Huifeng ;
Hong, Ling ;
Zhang, Tao ;
Xu, Ye ;
Xian, Kaihu ;
Gao, Bowei ;
Qin, Jinzhao ;
Zhang, Jianqi ;
Wei, Zhixiang ;
Hou, Jianhui .
ADVANCED MATERIALS, 2019, 31 (14)
[10]   Tuning the Molecular Weight of the Electron Accepting Polymer in All-Polymer Solar Cells: Impact on Morphology and Charge Generation [J].
Deshmukh, Kedar D. ;
Matsidik, Rukiya ;
Prasad, Shyamal K. K. ;
Connal, Luke A. ;
Liu, Amelia C. Y. ;
Gann, Eliot ;
Thomsen, Lars ;
Hodgkiss, Justin M. ;
Sommer, Michael ;
McNeill, Christopher R. .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (18)