By virtue of the increasingly large amount of various sensors, information about the same object can be collected from multiple views. These mutually enriched information can help many real-world applications, such as daily activity recognition in which both video cameras and on-body sensors are continuously collecting information. Such multivariate time series (m.t.s.)data from multiple views can lead to a significant improvement of classification tasks. However, the existing methods for time series data classification only focus on single-view data, and the benefits of mutual-support multiple views are not taken into account. In light of this challenge, we propose a novel approach, named Multi-view Discriminative Bilinear Projections (MDBP), for extracting discriminative features from multi-view m.t.s. data. First, MDBP keeps the original temporal structure of m.t.s. data, and projects m.t.s. from different views onto a shared latent subspace. Second, MDBP incorporates discriminative information by minimizing the within-class separability and maximizing the between-class separability of m.t.s. in the shared latent subspace. Moreover, a Laplacian regularization term is designed to preserve the temporal smoothness within m.t.s.. Extensive experiments on two real-world datasets demonstrate the effectiveness of our approach. Compared to the state-of-the-art multi-view learning and m.t.s. classification methods, our approach greatly improves the classification accuracy due to the full exploration of multi-view streaming data. Moreover, by using a feature fusion strategy, our approach further improves the classification accuracy by at least 10%.