Combination of snapshot hyperspectral retinal imaging and optical coherence tomography to identify Alzheimer's disease patients

被引:45
|
作者
Lemmens, Sophie [1 ,2 ,3 ]
Van Craenendonck, Toon [3 ]
Van Eijgen, Jan [1 ,2 ,3 ]
De Groef, Lies [4 ]
Bruffaerts, Rose [5 ,6 ]
de Jesus, Danilo Andrade [2 ]
Charle, Wouter [7 ]
Jayapala, Murali [7 ]
Sunaric-Megevand, Gordana [8 ]
Standaert, Arnout [3 ]
Theunis, Jan [3 ]
Van Keer, Karel [1 ,2 ]
Vandenbulcke, Mathieu [9 ]
Moons, Lieve [4 ]
Vandenberghe, Rik [5 ,6 ,10 ]
De Boever, Patrick [3 ,11 ,12 ]
Stalmans, Ingeborg [1 ,2 ]
机构
[1] Univ Hosp UZ Leuven, Dept Ophthalmol, Herestr 49, B-3000 Leuven, Belgium
[2] Katholieke Univ Leuven, Res Grp Ophthalmol, Biomed Sci Grp, Dept Neurosci, Herestr 49, B-3000 Leuven, Belgium
[3] VITO Flemish Inst Technol Res, Hlth Unit, Boeretang 200, B-2400 Mol, Belgium
[4] Katholieke Univ Leuven, Neural Circuit Dev & Regenerat Res Grp, Dept Biol, Naamsestr 61, B-3000 Leuven, Belgium
[5] Katholieke Univ Leuven, Dept Neurosci, Lab Cognit Neurol, Herestr 49, B-3000 Leuven, Belgium
[6] Univ Hosp UZ Leuven, Dept Neurol, Herestr 49, B-3000 Leuven, Belgium
[7] IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
[8] Mem A Rothschild, Clin Res Ctr, 22 Chemin Beau Soleil, CH-1208 Geneva, Switzerland
[9] Univ Hosp Leuven, Div Psychiat, Herestr 49, B-3000 Leuven, Belgium
[10] Alzheimer Res Ctr KU Leuven, Leuven Brain Inst, Herestr 49, B-3000 Leuven, Belgium
[11] Hasselt Univ, Ctr Environm Sci, B-3590 Diepenbeek, Belgium
[12] Univ Antwerp, Dept Biol, Univ Pl 1, B-2610 Antwerp, Belgium
基金
欧盟地平线“2020”;
关键词
Retina; Brain; Neurodegeneration; Cognitive impairment; Alzheimer’ s disease; Amyloid-beta (Aβ Hyperspectral imaging; Machine learning; Biomarker; FIBER LAYER THICKNESS; DEGENERATION; ABNORMALITIES; DIAGNOSIS; AMYLOIDOPATHY; BIOMARKERS; SEVERITY; EYES;
D O I
10.1186/s13195-020-00715-1
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction The eye offers potential for the diagnosis of Alzheimer's disease (AD) with retinal imaging techniques being explored to quantify amyloid accumulation and aspects of neurodegeneration. To assess these changes, this proof-of-concept study combined hyperspectral imaging and optical coherence tomography to build a classification model to differentiate between AD patients and controls. Methods In a memory clinic setting, patients with a diagnosis of clinically probable AD (n = 10) or biomarker-proven AD (n = 7) and controls (n = 22) underwent non-invasive retinal imaging with an easy-to-use hyperspectral snapshot camera that collects information from 16 spectral bands (460-620 nm, 10-nm bandwidth) in one capture. The individuals were also imaged using optical coherence tomography for assessing retinal nerve fiber layer thickness (RNFL). Dedicated image preprocessing analysis was followed by machine learning to discriminate between both groups. Results Hyperspectral data and retinal nerve fiber layer thickness data were used in a linear discriminant classification model to discriminate between AD patients and controls. Nested leave-one-out cross-validation resulted in a fair accuracy, providing an area under the receiver operating characteristic curve of 0.74 (95% confidence interval [0.60-0.89]). Inner loop results showed that the inclusion of the RNFL features resulted in an improvement of the area under the receiver operating characteristic curve: for the most informative region assessed, the average area under the receiver operating characteristic curve was 0.70 (95% confidence interval [0.55, 0.86]) and 0.79 (95% confidence interval [0.65, 0.93]), respectively. The robust statistics used in this study reduces the risk of overfitting and partly compensates for the limited sample size. Conclusions This study in a memory-clinic-based cohort supports the potential of hyperspectral imaging and suggests an added value of combining retinal imaging modalities. Standardization and longitudinal data on fully amyloid-phenotyped cohorts are required to elucidate the relationship between retinal structure and cognitive function and to evaluate the robustness of the classification model.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Combination of snapshot hyperspectral retinal imaging and optical coherence tomography to identify Alzheimer’s disease patients
    Sophie Lemmens
    Toon Van Craenendonck
    Jan Van Eijgen
    Lies De Groef
    Rose Bruffaerts
    Danilo Andrade de Jesus
    Wouter Charle
    Murali Jayapala
    Gordana Sunaric-Mégevand
    Arnout Standaert
    Jan Theunis
    Karel Van Keer
    Mathieu Vandenbulcke
    Lieve Moons
    Rik Vandenberghe
    Patrick De Boever
    Ingeborg Stalmans
    Alzheimer's Research & Therapy, 12
  • [2] Optical Coherence Tomography Reveals Retinal Neuroaxonal Thinning in Frontotemporal Dementia as in Alzheimer's Disease
    Ferrari, Laura
    Huang, Su-Chun
    Magnani, Giuseppe
    Ambrosi, Alessandro
    Comi, Giancarlo
    Leocani, Letizia
    JOURNAL OF ALZHEIMERS DISEASE, 2017, 56 (03) : 1101 - 1107
  • [3] RETINAL OPTICAL COHERENCE TOMOGRAPHY IMAGING BIOMARKERS
    Pandya, Bhadra U.
    Grinton, Michael
    Mandelcorn, Efrem D.
    Felfeli, Tina
    RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2024, 44 (03): : 369 - 380
  • [4] Comparison of Retinal Microvasculature in Patients With Alzheimer's Disease and Primary Open-Angle Glaucoma by Optical Coherence Tomography Angiography
    Zabel, Przemyslaw
    Kaluzny, Jakub J.
    Wilkosc-Debczynska, Monika
    Gebska-Toloczko, Martyna
    Suwala, Karolina
    Zabel, Katarzyna
    Zaron, Agata
    Kucharski, Robert
    Araszkiewicz, Aleksander
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (10) : 3447 - 3455
  • [5] Retinal alterations in mild cognitive impairment and Alzheimer's disease: an optical coherence tomography study
    Ascaso, Francisco J.
    Cruz, Nancy
    Modrego, Pedro J.
    Lopez-Anton, Raul
    Santabarbara, Javier
    Pascual, Luis F.
    Lobo, Antonio
    Cristobal, Jose A.
    JOURNAL OF NEUROLOGY, 2014, 261 (08) : 1522 - 1530
  • [6] Optical Coherence Tomography in Patients with Alzheimer's Disease: What Can It Tell Us?
    Song, Ailin
    Johnson, Nicholas
    Ayala, Alexandria
    Thompson, Atalie C.
    EYE AND BRAIN, 2021, 13 : 1 - 20
  • [7] Reliability and validity of Cirrus and Spectralis optical coherence tomography for detecting retinal atrophy in Alzheimer's disease
    Polo, V.
    Garcia-Martin, E.
    Bambo, M. P.
    Pinilla, J.
    Larrosa, J. M.
    Satue, M.
    Otin, S.
    Pablo, L. E.
    EYE, 2014, 28 (06) : 680 - 690
  • [8] Retinal analysis of a mouse model of Alzheimer's disease with multicontrast optical coherence tomography
    Harper, Danielle J.
    Augustin, Marco
    Lichtenegger, Antonia
    Gesperger, Johanna
    Himmel, Tanja
    Muck, Martina
    Merkle, Conrad W.
    Eugui, Pablo
    Kummer, Stefan
    Woehrer, Adelheid
    Gloesmann, Martin
    Baumann, Bernhard
    NEUROPHOTONICS, 2020, 7 (01)
  • [9] Hyperspectral retinal imaging in Alzheimer's disease and age-related macular degeneration: a review
    Du, Xiaoxi
    Park, Jongchan
    Zhao, Ruixuan
    Smith, R. Theodore
    Koronyo, Yosef
    Koronyo-Hamaoui, Maya
    Gao, Liang
    ACTA NEUROPATHOLOGICA COMMUNICATIONS, 2024, 12 (01):
  • [10] Retinal thickness and vascular parameters using optical coherence tomography in Alzheimer's disease: a meta-analysis
    Sheriff, Samran
    Shen, Ting
    Abdal, Sandra
    Saks, Danit
    Mirzaei, Mehdi
    Gupta, Veer
    Chitranshi, Nitin
    You, Yuyi
    Schultz, Angela
    Graham, Stuart
    Gupta, Vivek
    NEURAL REGENERATION RESEARCH, 2023, 18 (11) : 2504 - 2513