Phase Transformation of Biphasic Cu2S-CuInS2 to Monophasic CuInS2 Nanorods

被引:250
作者
Connor, Stephen T. [2 ]
Hsu, Ching-Mei [1 ]
Weil, Benjamin D. [1 ]
Aloni, Shaul [3 ]
Cui, Yi [1 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
SOLAR-ENERGY CONVERSION; CDSE NANOCRYSTALS; SULFIDE NANOCRYSTALS; GROWTH; NANOPARTICLES; NANOWIRES; ROUTE; HETEROSTRUCTURES; NUCLEATION; CELLS;
D O I
10.1021/ja809901u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We synthesized wurtzite CuInS2 nanorods (NRs) by colloidal solution-phase growth. We discovered that the growth process starts with nucleation of Cu2S nanodisks, followed by epitaxial overgrowth of CuInS2 NRs onto only one face of Cu2S nanodisks, resulting in biphasic Cu2S-ClSu heterostructured NRs. The phase transformation of biphasic Cu2S-CuInS2 into monophasic CuInS2 NRs occurred with growth progression. The observed epitaxial overgrowth and phase transformation is facile for three reasons. First, the sharing of the sulfur sublattice by the hexagonal chalcocite Cu2S and wurtzite CuInS2 minimizes the lattice distortion. Second, Cu2S is in a superionic conducting state at the growth temperature of 250 degrees C wherein the copper ions move fluidly. Third, the size of the Cu2S nanodisks is small, resulting in fast phase transformation. Our results provide valuable insight into the controlled solution growth of ternary chalcogenide nanoparticles and will aid in the development of solar cells using ternary I-III-VI2 semiconductors.
引用
收藏
页码:4962 / 4966
页数:5
相关论文
共 36 条
[1]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[2]   An 11.4% efficient polycrystalline thin film solar cell based on CuInS2 with a Cd-free buffer layer [J].
Braunger, D ;
Hariskos, D ;
Walter, T ;
Schock, HW .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1996, 40 (02) :97-102
[3]   DISTRIBUTION OF ATOMS IN HIGH CHALCOCITE, CU2S [J].
BUERGER, MJ ;
WUENSCH, BJ .
SCIENCE, 1963, 141 (357) :276-&
[4]   Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor [J].
Castro, SL ;
Bailey, SG ;
Raffaelle, RP ;
Banger, KK ;
Hepp, AF .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (33) :12429-12435
[5]   One-pot synthesis of copper-indium sulfide nanocrystal heterostructures with acorn, bottle, and larva shapes [J].
Choi, SH ;
Kim, EG ;
Hyeon, T .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (08) :2520-2521
[6]  
Czekelius C, 1999, ADV MATER, V11, P643, DOI 10.1002/(SICI)1521-4095(199906)11:8<643::AID-ADMA643>3.0.CO
[7]  
2-I
[8]   Time-resolved in-situ energy and angular dispersive X-ray diffraction studies of the formation of the microporous gallophosphate ULM-5 under hydrothermal conditions [J].
Francis, RJ ;
O'Brien, S ;
Fogg, AM ;
Halasyamani, PS ;
O'Hare, D ;
Loiseau, T ;
Férey, G .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (05) :1002-1015
[9]   Air-stable all-inorganic nanocrystal solar cells processed from solution [J].
Gur, I ;
Fromer, NA ;
Geier, ML ;
Alivisatos, AP .
SCIENCE, 2005, 310 (5747) :462-465
[10]   Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals [J].
Han, Wei ;
Yi, Luoxin ;
Zhao, Nan ;
Tang, Aiwei ;
Gao, Mingyuan ;
Tang, Zhiyong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (39) :13152-13161