Toxic effects of nanoparticles on bioluminescence activity, seed germination, and gene mutation

被引:38
作者
Ko, Kyung-Seok [1 ]
Kong, In Chul [2 ]
机构
[1] KIGAM, Geol Environm Div, Taejon, South Korea
[2] Yeungnam Univ, Dept Environm Engn, Gyungsan Si 712749, Kyungbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Bioassays; Bioluminescence; Mutation; Nanoparticle (NP); Seed germination; ENGINEERED NANOPARTICLES; CONTAMINATED SOILS; ROOT ELONGATION; ECOTOXICITY; GROWTH; PLANTS; TIO2; PHYTOTOXICITY; NANOMATERIALS; TESTS;
D O I
10.1007/s00253-013-5404-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The potential environmental toxicities of several metal oxide nanoparticles (NPs; CuO, TiO2, NiO, Fe2O3, ZnO, and Co3O4) were evaluated in the context of bioluminescence activity, seed germination, and bacterial gene mutation. The bioassays exhibited different sensitivities, i.e., each kind of NP exhibited a different level of toxicity in each of the bioassays. However, with a few exceptions, CuO and ZnO NPs had most toxic for germination of Lactuca seed (EC50 0.46 mg CuO/l) and bioluminescence (EC50 1.05 mg ZnO/l). Three NPs (Co3O4, TiO2, and Fe2O3) among all tested concentrations (max. 1,000 mg/l) showed no inhibitory effects on the tested organisms, except for Co3O4 NPs on bioluminescence activity (EC50 62.04 mg/l). The sensitivity of Lactuca seeds was greater than that of Raphanus seeds (EC50 0.46 mg CuO/l versus 26.84 mg CuO /l ). The ranking of metal toxicity levels on bioluminescence was in the order of ZnO > CuO > Co3O4 > NiO > Fe2O3, TiO2, while CuO > ZnO > NiO > Co3O4, Fe2O3, TiO2 on germination. No revertant mutagenic ratio (greater than 2.0) of Salmonella typhimurium TA 98 was observed under any tested condition. These findings demonstrate that several bioassays, as opposed to any single one, are needed for the accurate assessment of NP toxicity on ecosystems.
引用
收藏
页码:3295 / 3303
页数:9
相关论文
共 46 条
[1]  
Akinci IE, 2010, AFR J BIOTECHNOL, V9, P4589
[2]   Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays [J].
Ait Ali N. ;
Bernal M.P. ;
Ater M. .
Plant and Soil, 2002, 239 (1) :103-111
[3]   Soil ecotoxicity assessment using cadmium sensitive plants [J].
An, YJ .
ENVIRONMENTAL POLLUTION, 2004, 127 (01) :21-26
[4]  
[Anonymous], WASTERWATER MICROBIO
[5]   Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata [J].
Aruoja, Villem ;
Dubourguier, Henri-Charles ;
Kasemets, Kaja ;
Kahru, Anne .
SCIENCE OF THE TOTAL ENVIRONMENT, 2009, 407 (04) :1461-1468
[6]   Comparison of plants for germination toxicity tests in petroleum-contaminated soils [J].
Banks, MK ;
Schultz, KE .
WATER AIR AND SOIL POLLUTION, 2005, 167 (1-4) :211-219
[7]   Evaluation of the ecotoxicity of model nanoparticles [J].
Barrena, Raquel ;
Casals, Eudald ;
Colon, Joan ;
Font, Xavier ;
Sanchez, Antoni ;
Puntes, Victor .
CHEMOSPHERE, 2009, 75 (07) :850-857
[8]   Toxicity testing of fifteen non-crop plant species with six herbicides in a greenhouse experiment:: Implications for risk assessment [J].
Boutin, C ;
Elmegaard, N ;
Kjær, C .
ECOTOXICOLOGY, 2004, 13 (04) :349-369
[9]   In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility [J].
Brunner, Tobias J. ;
Wick, Peter ;
Manser, Pius ;
Spohn, Philipp ;
Grass, Robert N. ;
Limbach, Ludwig K. ;
Bruinink, Arie ;
Stark, Wendelin J. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (14) :4374-4381
[10]   Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles [J].
Crane, Mark ;
Handy, Richard D. ;
Garrod, John ;
Owen, Richard .
ECOTOXICOLOGY, 2008, 17 (05) :421-437