Robust support vector regression for biophysical variable estimation from remotely sensed images

被引:133
作者
Camps-Valls, Gustavo [1 ]
Bruzzone, Lorenzo
Rojo-Alvarez, Jose L.
Melgani, Farid
机构
[1] Univ Valencia, Escola Tecn Super Engn, Dept Elect Engn, Grp Processament Digital Senyals, E-46100 Valencia, Spain
[2] Univ Trent, Dept Informat & Commun Technol, I-38050 Trento, Italy
[3] Univ Carlos III Madrid, Dept Teoria Senal & Comunicac, Madrid 28911, Spain
关键词
biophysical parameter estimation; medium resolution Imaging spectrometer (MERIS); ocean chlorophyll concentration; regression; robust cost function; sea-viewing wide field-of-view sensor (SeaWiFS)/SeaWiFS bio-optical algorithm mini-workshop; support vector machine (SVM);
D O I
10.1109/LGRS.2006.871748
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter introduces the epsilon-Huber loss function in the support vector regression (SVR) formulation for the estimation of biophysical parameters extracted from remotely sensed data. This cost function can handle the different types of noise contained in the dataset. The method is successfully compared to other cost functions in the SVR framework, neural networks and classical, bio-optical models for the particular case of the estimation of ocean chlorophyll concentration from satellite remote sensing data. The proposed model provides more accurate, less biased, and improved robust estimation results on the considered case study, especially significant when few in situ measurements are available.
引用
收藏
页码:339 / 343
页数:5
相关论文
共 18 条
[1]  
Ballester EB, 2002, ECOL MODEL, V156, P27
[2]   Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data [J].
Bruzzone, L ;
Melgani, F .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (01) :159-174
[3]   Retrieval of sea water optically active parameters from hyperspectral data by means of generalized radial basis function neural networks [J].
Cipollini, P ;
Corsini, G ;
Diani, M ;
Grasso, R .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (07) :1508-1524
[4]  
Courant, 1953, METHODS MATH PHYS
[5]  
De Martino M., 2002, P INT WORKSH GEOSP K, P54
[6]   Forecasting Vegetation Greenness With Satellite and Climate Data [J].
Ji, Lei ;
Peters, Albert J. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2004, 1 (01) :3-6
[7]   Asymptotic behaviors of support vector machines with Gaussian kernel [J].
Keerthi, SS ;
Lin, CJ .
NEURAL COMPUTATION, 2003, 15 (07) :1667-1689
[8]  
Kimes D.S., 2000, Remote Sensing Reviews, V18, P381, DOI DOI 10.1080/02757250009532396
[9]   Application of machine-learning techniques toward the creation of a consistent and calibrated global chlorophyll concentration baseline dataset using remotely sensed ocean color data [J].
Kwiatkowska, EJ ;
Fargion, GS .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (12) :2844-2860
[10]  
Lillesand T., 2015, Remote Sensing and Image Interpretation