Bone marrow stromal cells: Characterization and clinical application

被引:203
|
作者
Krebsbach, PH [1 ]
Kuznetsov, SA
Bianco, P
Robey, PG
机构
[1] Univ Michigan, Sch Dent, Dept Oral Med Pathol & Oncol, Ann Arbor, MI 48109 USA
[2] Natl Inst Dent & Craniofacial Res, Craniofacial & Skeletal Dis Branch, NIH, Bethesda, MD USA
[3] Univ Aquila, Dipartimento Med Sperimentale, I-67100 Laquila, Italy
关键词
bone marrow stromal cells; osteoprogenitor cells; transplantation; bone regeneration;
D O I
10.1177/10454411990100020401
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
The bone marrow stroma consists of a heterogeneous population of cells that provide the structural and physiological support for hematopoietic cells. Additionally, the bone marrow stroma contains cells with a stem-cell-like character that allows them to differentiate into bone, cartilage, adipocytes, and hematopoietic supporting tissues. Several experimental approaches have been used to characterize the development and Functional nature of these cells in vivo and their differentiating potential in vitro. In vivo, presumptive osteogenic precursors have been identified by morphologic and immunohistochemical methods. In culture, the stromal cells can be separated from hematopoietic cells by their differential adhesion to tissue culture plastic and their prolonged proliferative potential. In cultures generated from single-cell suspensions of marrow, bone marrow stromal cells grow in colonies, each derived From a single precursor cell termed the colony-forming unit-fibroblast. Culture methods have been developed to expand marrow stromal cells derived From human, mouse, and other species. Under appropriate conditions, these cells are capable of Forming new bone after in vivo transplantation. Various methods of cultivation and transplantation conditions have been studied and found to have substantial influence on the transplantation outcome. The finding that bone marrow stromal cells can be manipulated in vitro and subsequently form bone in vivo provides a powerful new model system for studying the basic biology of bone and for generating models for therapeutic strategies aimed at regenerating skeletal elements.
引用
收藏
页码:165 / 181
页数:17
相关论文
共 50 条
  • [1] Isolation and characterization of primary bone marrow mesenchymal stromal cells
    Li, Hongzhe
    Ghazanfari, Roshanak
    Zacharaki, Dimitra
    Lim, Hooi Ching
    Scheding, Stefan
    HEMATOPOIETIC STEM CELLS IX, 2016, 1370 : 109 - 118
  • [2] Sequential Differentiation of Human Bone Marrow Stromal Cells for Bone Regeneration
    Huebner, Eva Johanna
    Padron, Nestor Torio
    Kubosch, David
    Finkenzeller, Guenter
    Suedkamp, Norbert P.
    Niemeyer, Philipp
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2015, 12 (05) : 331 - 342
  • [3] Characterization of bone marrow mesenchymal stromal cells in aplastic anaemia
    Hamzic, Edita
    Whiting, Karen
    Smith, Edward Gordon
    Pettengell, Ruth
    BRITISH JOURNAL OF HAEMATOLOGY, 2015, 169 (06) : 804 - 813
  • [4] Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: Basic science to clinical translation
    Kagami, Hideaki
    Agata, Hideki
    Tojo, Arinobu
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2011, 43 (03) : 286 - 289
  • [5] Characterization of growth and osteogenic differentiation of rabbit bone marrow stromal cells
    Roostaeian, Jason
    Carlsen, Brian
    Simhaee, David
    Jarrahy, Reza
    Huang, Weibiao
    Ishida, Kenji
    Rudkin, George H.
    Yamaguchi, Dean T.
    Miller, Timothy A.
    JOURNAL OF SURGICAL RESEARCH, 2006, 133 (02) : 76 - 83
  • [6] In vitro characterization of bone marrow stromal cells from osteoarthritic donors
    Stiehler, Maik
    Rauh, Juliane
    Buenger, Cody
    Jacobi, Angela
    Vater, Corina
    Schildberg, Theresa
    Liebers, Cornelia
    Guenther, Klaus-Peter
    Bretschneider, Henriette
    STEM CELL RESEARCH, 2016, 16 (03) : 782 - 789
  • [7] Sequential differentiation of human bone marrow stromal cells for bone regeneration
    Eva Johanna Huebner
    Nestor Torio Padron
    David Kubosch
    Guenter Finkenzeller
    Norbert P. Suedkamp
    Philipp Niemeyer
    Tissue Engineering and Regenerative Medicine, 2015, 12 : 331 - 342
  • [8] Characterization and Function of Histamine Receptors in Human Bone Marrow Stromal Cells
    Nemeth, Krisztian
    Wilson, Todd
    Rada, Balazs
    Parmelee, Alissa
    Mayer, Balazs
    Buzas, Edit
    Falus, Andras
    Key, Sharon
    Masszi, Tamas
    Karpati, Sarolta
    Mezey, Eva
    STEM CELLS, 2012, 30 (02) : 222 - 231
  • [9] Generation of clinical grade human bone marrow stromal cells for use in bone regeneration
    Robey, Pamela G.
    Kuznetsov, Sergei A.
    Ren, Jiaqiang
    Klein, Harvey G.
    Sabatino, Marianna
    Stroncek, David F.
    BONE, 2015, 70 : 87 - 92
  • [10] Schwann cells promote neuronal differentiation of bone marrow stromal cells
    Zhi, Xiao Dong
    Lv, Gang
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2011, 10 (17): : 3498 - 3503