Stimulus-responsive self-assembly of protein-based fractals by computational design

被引:42
作者
Hernandez, Nancy E. [1 ,2 ]
Hansen, William A. [2 ]
Zhu, Denzel [3 ]
Shea, Maria E. [4 ]
Khalid, Marium [5 ]
Manichev, Viacheslav [1 ,6 ]
Putnins, Matthew [2 ,5 ]
Chen, Muyuan [7 ]
Dodge, Anthony G. [8 ]
Yang, Lu [1 ]
Marrero-Berrios, Ileana [5 ]
Banal, Melissa [9 ]
Rechani, Phillip [10 ]
Gustafsson, Torgny [6 ,10 ]
Feldman, Leonard C. [6 ,10 ]
Lee, Sang-Hyuk [2 ,10 ]
Wackett, Lawrence P. [8 ,11 ]
Dai, Wei [2 ,9 ]
Khare, Sagar D. [1 ,2 ]
机构
[1] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Inst Quantitat Biomed, Piscataway, NJ 08854 USA
[3] Rutgers State Univ, Dept Biochem & Microbiol, New Brunswick, NJ USA
[4] Rutgers State Univ, Dept Mol Biol & Biochem, Piscataway, NJ USA
[5] Rutgers State Univ, Dept Biomed Engn, Piscataway, NJ USA
[6] Rutgers State Univ, Inst Adv Mat Devices & Nanotechnol, Piscataway, NJ USA
[7] Baylor Coll Med, Verna & Marrs McLean Dept Biochem & Mol Biol, Program Struct & Computat Biol & Mol Biophys, Houston, TX 77030 USA
[8] Univ Minnesota, BioTechnol Inst, St Paul, MN 55108 USA
[9] Rutgers State Univ, Dept Cell Biol & Neurosci, Piscataway, NJ USA
[10] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ USA
[11] Univ Minnesota, Dept Biochem Mol Biol & Biophys, St Paul, MN 55108 USA
基金
美国国家科学基金会;
关键词
DIFFUSION-LIMITED AGGREGATION; CELLULAR INTERACTIONS; MATHEMATICAL-MODELS; DNA ORIGAMI; POLYMER; PHYSICS; GENERATION; FILAMENTS; PEPTIDE;
D O I
10.1038/s41557-019-0277-y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fractal topologies, which are statistically self-similar over multiple length scales, are pervasive in nature. The recurrence of patterns in fractal-shaped branched objects, such as trees, lungs and sponges, results in a high surface area to volume ratio, which provides key functional advantages including molecular trapping and exchange. Mimicking these topologies in designed protein-based assemblies could provide access to functional biomaterials. Here we describe a computational design approach for the reversible self-assembly of proteins into tunable supramolecular fractal-like topologies in response to phosphorylation. Guided by atomic-resolution models, we develop fusions of Src homology 2 (SH2) domain or a phosphorylatable SH2-binding peptide, respectively, to two symmetric, homo-oligomeric proteins. Mixing the two designed components resulted in a variety of dendritic, hyperbranched and sponge-like topologies that are phosphorylation-dependent and self-similar over three decades (similar to 10 nm-10 mu m) of length scale, in agreement with models from multiscale computational simulations. Designed assemblies perform efficient phosphorylation-dependent capture and release of cargo proteins.
引用
收藏
页码:605 / 614
页数:10
相关论文
共 59 条
[1]  
[Anonymous], 2005, FRACTALS BIOL MED
[2]   Protein components for nanodevices [J].
Astier, Y ;
Bayley, H ;
Howorka, S .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2005, 9 (06) :576-584
[3]   Fully solvable equilibrium self-assembly process: Fine-tuning the clusters size and the connectivity in patchy particle systems [J].
Bianchi, Emanuela ;
Tartaglia, Piero ;
La Nave, Emilia ;
Sciortino, Francesco .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (40) :11765-11769
[4]   Theoretical and numerical study of the phase diagram of patchy colloids: Ordered and disordered patch arrangements [J].
Bianchi, Emanuela ;
Tarlaglia, Piero ;
Zaccarelli, Emanuela ;
Sciortino, Francesco .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (14)
[5]   A Non-Chromatographic Method for the Purification of a Bivalently Active Monoclonal IgG Antibody from Biological Fluids [J].
Bilgicer, Basar ;
Thomas, Samuel W., III ;
Shaw, Bryan F. ;
Kaufman, George K. ;
Krishnamurthy, Vijay. M. ;
Estroff, Lara A. ;
Yang, Jerry ;
Whitesides, George M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (26) :9361-9367
[6]  
Brangwynne CP, 2015, NAT PHYS, V11, P899, DOI [10.1038/nphys3532, 10.1038/NPHYS3532]
[7]  
Brodin JD, 2012, NAT CHEM, V4, P375, DOI [10.1038/NCHEM.1290, 10.1038/nchem.1290]
[8]   Fractal nanotechnology [J].
Cerofolini, G. F. ;
Narducci, D. ;
Amato, P. ;
Romano, E. .
NANOSCALE RESEARCH LETTERS, 2008, 3 (10) :381-385
[9]   Design and Construction of Functional Supramolecular Metalloprotein Assemblies [J].
Churchfield, Lewis A. ;
Tezcan, F. Akif .
ACCOUNTS OF CHEMICAL RESEARCH, 2019, 52 (02) :345-355
[10]   Macromolecular modeling with Rosetta [J].
Das, Rhiju ;
Baker, David .
ANNUAL REVIEW OF BIOCHEMISTRY, 2008, 77 :363-382