Oxygen-Reconstituted Active Species of Single-Atom Cu Catalysts for Oxygen Reduction Reaction

被引:50
作者
Yang, Liu [1 ]
Xu, Haoxiang [1 ]
Liu, Huibing [1 ]
Zeng, Xiaofei [1 ]
Cheng, Daojian [1 ]
Huang, Yan [1 ]
Zheng, Lirong [2 ]
Cao, Rui [3 ]
Cao, Dapeng [1 ]
机构
[1] Beijing Univ Chem Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
[3] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
关键词
POROUS CARBONS; BIFUNCTIONAL ELECTROCATALYSTS; EFFICIENT; SITES; IDENTIFICATION; GRAPHENE; COPPER; EVOLUTION;
D O I
10.34133/2020/7593023
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identification of an active center of catalysts under realistic working conditions of oxygen reduction reaction (ORR) still remains a great challenge and unclear. Herein, we synthesize the Cu single atom embedded on nitrogen-doped graphene-like matrix electrocatalyst (abbreviated as SA-Cu/NG). The results show that SA-Cu/NG possesses a higher ORR capability than 20% Pt/C at alkaline solution while the inferior activity to 20% Pt/C at acidic medium. Based on the experiment and simulation calculation, we identify the atomic structure of Cu-N2C2 in SA-Cu/NG and for the first time unravels that the oxygen-reconstituted Cu-N2C2-O structure is really the active species of alkaline ORR, while the oxygen reconstitution does not happen at acidic medium. The finding of oxygen-reconstituted active species of SA-Cu/NG at alkaline media successfully unveils the bottleneck puzzle of why the performance of ORR catalysts at alkaline solution is better than that at acidic media, which provides new physical insight into the development of new ORR catalysts.
引用
收藏
页数:12
相关论文
共 52 条
[1]   Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution [J].
Cao, Linlin ;
Luo, Qiquan ;
Liu, Wei ;
Lin, Yue ;
Liu, Xiaokang ;
Cao, Yuanjie ;
Zhang, Wei ;
Wu, Yuen ;
Yang, Jinlong ;
Yao, Tao ;
Wei, Shiqiang .
NATURE CATALYSIS, 2019, 2 (02) :134-141
[2]   Atomically Dispersed Iron-Nitrogen Species as Electrocatalysts for Bifunctional Oxygen Evolution and Reduction Reactions [J].
Chen, Pengzuo ;
Zhou, Tianpei ;
Xing, Lili ;
Xu, Kun ;
Tong, Yun ;
Xie, Hui ;
Zhang, Lidong ;
Yan, Wensheng ;
Chu, Wangsheng ;
Wu, Changzheng ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (02) :610-614
[3]   Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction [J].
Chen, Yuanjun ;
Ji, Shufang ;
Wang, Yanggang ;
Dong, Juncai ;
Chen, Wenxing ;
Li, Zhi ;
Shen, Rongan ;
Zheng, Lirong ;
Zhuang, Zhongbin ;
Wang, Dingsheng ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (24) :6937-6941
[4]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[5]   Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst [J].
Chung, Hoon T. ;
Cullen, David A. ;
Higgins, Drew ;
Sneed, Brian T. ;
Holby, Edward F. ;
More, Karren L. ;
Zelenay, Piotr .
SCIENCE, 2017, 357 (6350) :479-483
[6]   A copper single-atom catalyst towards efficient and durable oxygen reduction for fuel cells [J].
Cui, Liting ;
Cui, Lirui ;
Li, Zhengjian ;
Zhang, Jin ;
Wang, Haining ;
Lu, Shanfu ;
Xiang, Yan .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (28) :16690-16695
[7]   Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts [J].
Ding, Kunlun ;
Gulec, Ahmet ;
Johnson, Alexis M. ;
Schweitzer, Neil M. ;
Stucky, Galen D. ;
Marks, Laurence D. ;
Stair, Peter C. .
SCIENCE, 2015, 350 (6257) :189-192
[8]   Mild Cognitive Impairment Reversion and Progression: Rates and Predictors in Community-Living Older Persons in the Singapore Longitudinal Ageing Studies Cohort [J].
Gao, Qi ;
Gwee, Xinyi ;
Feng, Liang ;
Nyunt, Ma Shwe Zin ;
Feng, Lei ;
Collinson, Simon L. ;
Chong, Mei Sian ;
Lim, Wee Shiong ;
Lee, Tih-Shih ;
Yap, Philip ;
Yap, Keng Bee ;
Ng, Tze Pin .
DEMENTIA AND GERIATRIC COGNITIVE DISORDERS EXTRA, 2018, 8 (02) :226-237
[9]   Formation of Single-Holed Cobalt/N-Doped Carbon Hollow Particles with Enhanced Electrocatalytic Activity toward Oxygen Reduction Reaction in Alkaline Media [J].
Guan, Bu Yuan ;
Yu, Le ;
Lou, Xiong Wen .
ADVANCED SCIENCE, 2017, 4 (10)
[10]   A dual-metal-organic-framework derived electrocatalyst for oxygen reduction [J].
Guan, Bu Yuan ;
Yu, Le ;
Lou, Xiong Wen .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3092-3096