Numerical computation of nonlinear normal modes in mechanical engineering

被引:131
作者
Renson, L. [1 ]
Kerschen, G. [1 ]
Cochelin, B. [2 ]
机构
[1] Univ Liege, Dept Aerosp & Mech Engn, Space Struct & Syst Lab, Liege, Belgium
[2] Aix Marseille Univ, Cent Marseille, LMA, CNRS UPR 7051, F-13451 Marseille, France
关键词
HARMONIC-BALANCE METHOD; PERIODIC-SOLUTIONS; MODAL-ANALYSIS; FREE-VIBRATIONS; FINITE-ELEMENT; BIFURCATION-ANALYSIS; LINEAR-OSCILLATOR; COMPLEX DYNAMICS; CONTINUATION; SYSTEMS;
D O I
10.1016/j.jsv.2015.09.033
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper reviews the recent advances in computational methods for nonlinear normal modes (NNMs). Different algorithms for the computation of undamped and damped NNMs are presented, and their respective advantages and limitations are discussed. The methods are illustrated using various applications ranging from low-dimensional weakly nonlinear systems to strongly nonlinear industrial structures. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:177 / 206
页数:30
相关论文
共 142 条
  • [81] Nonlinear normal modes, modal interactions and isolated resonance curves
    Kuether, R. J.
    Renson, L.
    Detroux, T.
    Grappasonni, C.
    Kerschenh, G.
    Allen, M. S.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2015, 351 : 299 - 310
  • [82] Kuether R.J., 2012, P ASME 2012 INT DES
  • [83] A numerical approach to directly compute nonlinear normal modes of geometrically nonlinear finite element models
    Kuether, Robert J.
    Allen, Matthew S.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2014, 46 (01) : 1 - 15
  • [84] AMPLITUDE INCREMENTAL VARIATIONAL PRINCIPLE FOR NON-LINEAR VIBRATION OF ELASTIC-SYSTEMS
    LAU, SL
    CHEUNG, YK
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1981, 48 (04): : 959 - 964
  • [85] Laxalde D., 2008, P GT2008 ASME TURB E
  • [86] Nonlinear modal analysis of mechanical systems with frictionless contact interfaces
    Laxalde, Denis
    Legrand, Mathias
    [J]. COMPUTATIONAL MECHANICS, 2011, 47 (04) : 469 - 478
  • [87] Complex non-linear modal analysis for mechanical systems: Application to turbomachinery bladings with friction interfaces
    Laxalde, Denis
    Thouverez, Fabrice
    [J]. JOURNAL OF SOUND AND VIBRATION, 2009, 322 (4-5) : 1009 - 1025
  • [88] A harmonic-based method for computing the stability of periodic solutions of dynamical systems
    Lazarus, Arnaud
    Thomas, Olivier
    [J]. COMPTES RENDUS MECANIQUE, 2010, 338 (09): : 510 - 517
  • [89] Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment
    Lee, YS
    Kerschen, G
    Vakakis, AF
    Panagopoulos, P
    Bergman, L
    McFarland, DM
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2005, 204 (1-2) : 41 - 69
  • [90] Legrand M., 2004, INT J ROTATING MACH, V10, P319, DOI [DOI 10.1080/10236210490447773, 10.1155/S1023621X04000338, DOI 10.1155/S1023621X04000338]