Numerical computation of nonlinear normal modes in mechanical engineering

被引:131
作者
Renson, L. [1 ]
Kerschen, G. [1 ]
Cochelin, B. [2 ]
机构
[1] Univ Liege, Dept Aerosp & Mech Engn, Space Struct & Syst Lab, Liege, Belgium
[2] Aix Marseille Univ, Cent Marseille, LMA, CNRS UPR 7051, F-13451 Marseille, France
关键词
HARMONIC-BALANCE METHOD; PERIODIC-SOLUTIONS; MODAL-ANALYSIS; FREE-VIBRATIONS; FINITE-ELEMENT; BIFURCATION-ANALYSIS; LINEAR-OSCILLATOR; COMPLEX DYNAMICS; CONTINUATION; SYSTEMS;
D O I
10.1016/j.jsv.2015.09.033
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper reviews the recent advances in computational methods for nonlinear normal modes (NNMs). Different algorithms for the computation of undamped and damped NNMs are presented, and their respective advantages and limitations are discussed. The methods are illustrated using various applications ranging from low-dimensional weakly nonlinear systems to strongly nonlinear industrial structures. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:177 / 206
页数:30
相关论文
共 142 条
  • [1] Ahlquist JR, 2010, P INT MOD AN C JACKS
  • [2] PEFLOQ - AN ALGORITHM FOR THE BIFURCATIONAL ANALYSIS OF PERIODIC-SOLUTIONS OF AUTONOMOUS SYSTEMS
    ALUKO, M
    CHANG, HC
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 1984, 8 (06) : 355 - 365
  • [3] [Anonymous], 2008, NORMAL MODES LOCALIZ
  • [4] [Anonymous], 1971, OPTIMAL CONTROL SYST
  • [5] [Anonymous], 2000, AUTO2000 CONTINUATIO
  • [6] Frequency stabilization in nonlinear micromechanical oscillators
    Antonio, Dario
    Zanette, Damian H.
    Lopez, Daniel
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [7] Ardeh H.A., 2012, P ASME 2012 INT DES
  • [8] Ardeh H.A., 2013, P INT MOD AN C IMAC
  • [9] Two methods for the computation of nonlinear modes of vibrating systems at large amplitudes
    Arquier, Remi
    Bellizzi, Sergio
    Bouc, Robert
    Cochelin, Bruno
    [J]. COMPUTERS & STRUCTURES, 2006, 84 (24-25) : 1565 - 1576
  • [10] Review of Applications of Nonlinear Normal Modes for Vibrating Mechanical Systems
    Avramov, Konstantin V.
    Mikhlin, Yuri V.
    [J]. APPLIED MECHANICS REVIEWS, 2013, 65 (02)