A Note on Convex Reformulation Schemes for Mixed Integer Quadratic Programs

被引:3
作者
Newby, Eric [1 ]
Ali, M. M. [1 ]
机构
[1] Univ Witwatersrand, Sch Computat & Appl Math, ZA-2050 Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Mixed integer programming; Quadratic programming; Linear transformation; Non-convex optimization; Semidefinite programming; GLOBAL OPTIMIZATION;
D O I
10.1007/s10957-013-0340-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper examines a convex reformulation scheme for mixed integer quadratic programs, which was recently developed in the literature. A modification to the scheme, based on a linear transformation, is presented. The modification improves performance for problems which have more continuous variables than integer variables. Numerical results are presented showing the effectiveness of the modification.
引用
收藏
页码:457 / 469
页数:13
相关论文
共 18 条
[1]   SCIP: solving constraint integer programs [J].
Achterberg, Tobias .
MATHEMATICAL PROGRAMMING COMPUTATION, 2009, 1 (01) :1-41
[2]   Branching and bounds tightening techniques for non-convex MINLP [J].
Belotti, Pietro ;
Lee, Jon ;
Liberti, Leo ;
Margot, Francois ;
Waechter, Andreas .
OPTIMIZATION METHODS & SOFTWARE, 2009, 24 (4-5) :597-634
[3]   Extending the QCR method to general mixed-integer programs [J].
Billionnet, Alain ;
Elloumi, Sourour ;
Lambert, Amelie .
MATHEMATICAL PROGRAMMING, 2012, 131 (1-2) :381-401
[4]  
Buchheim C., 2010, P EUR WORKSH MIX INT
[5]  
Burer S, 2012, IMA VOL MATH APPL, V154, P373
[7]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[8]   Gap inequalities for non-convex mixed-integer quadratic programs [J].
Galli, Laura ;
Kaparis, Konstantinos ;
Letchford, Adam N. .
OPERATIONS RESEARCH LETTERS, 2011, 39 (05) :297-300
[9]  
Gau CYT, 2003, NONCONVEX OPTIM, V74, P145
[10]  
Horn R.A., 2012, Matrix Analysis