Cellular mechanisms of burst firing-mediated long-term depression in rat neocortical pyramidal cells

被引:60
作者
Czarnecki, Antonny
Birtoli, Barbara
Ulrich, Daniel
机构
[1] Univ Basel, Dept Physiol, CH-4056 Basel, Switzerland
[2] Univ Bern, Dept Physiol, CH-3012 Bern, Switzerland
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2007年 / 578卷 / 02期
关键词
D O I
10.1113/jphysiol.2006.123588
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
During wakefulness and sleep, neurons in the neocortex emit action potentials tonically or in rhythmic bursts, respectively. However, the role of synchronized discharge patterns is largely unknown. We have recently shown that pairings of excitatory postsynaptic potentials (EPSPs) and action potential bursts or single spikes lead to long-term depression (burst-LTD) or long-term potentiation, respectively. In this study, we elucidate the cellular mechanisms of burst-LTD and characterize its functional properties. Whole-cell patch-clamp recordings were obtained from layer V pyramidal cells in somatosensory cortex of juvenile rats in vitro and composite EPSPs and EPSCs were evoked extracellularly in layers II/III. Repetitive burst-pairings led to a long-lasting depression of EPSPs and EPSCs that was blocked by inhibitors of metabotropic glutamate group 1 receptors, phospholipase C, protein kinase C (PKC) and calcium release from the endoplasmic reticulum, and that required an intact machinery for endocytosis. Thus, burst-LTD is induced via a Ca2+- and phosphatidylinositol-dependent activation of PKC and expressed through phosphorylation-triggered endocytosis of AMPA receptors. Functionally, burst-LTD is inversely related to EPSP size and bursts dominate single spikes in determining the sign of synaptic plasticity. Thus burst-firing constitutes a signal by which coincident synaptic inputs are proportionally downsized. Overall, our data thus suggest a mechanism by which synaptic weights can be reconfigured during non-rapid eye movement sleep.
引用
收藏
页码:471 / 479
页数:9
相关论文
共 39 条
[1]  
ANWYL R, 1999, BRAIN RES REV, V366, P151
[2]   LONG-TERM DEPRESSION OF EXCITATORY SYNAPTIC TRANSMISSION AND ITS RELATIONSHIP TO LONG-TERM POTENTIATION [J].
ARTOLA, A ;
SINGER, W .
TRENDS IN NEUROSCIENCES, 1993, 16 (11) :480-487
[3]   Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway [J].
Batchelor, AM ;
Garthwaite, J .
NATURE, 1997, 385 (6611) :74-77
[4]   Firing mode-dependent synaptic plasticity in rat neocortical pyramidal neurons [J].
Birtoli, B ;
Ulrich, D .
JOURNAL OF NEUROSCIENCE, 2004, 24 (21) :4935-4940
[5]   GLUTAMATE MEDIATES A SLOW SYNAPTIC RESPONSE IN HIPPOCAMPAL SLICE CULTURES [J].
CHARPAK, S ;
GAHWILER, BH .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1991, 243 (1308) :221-226
[6]   Functional coupling between ryanodine receptors and L-type calcium channels in neurons [J].
Chavis, P ;
Fagni, L ;
Lansman, JB ;
Bockaert, J .
NATURE, 1996, 382 (6593) :719-722
[7]   ELECTRO-PHYSIOLOGICAL PROPERTIES OF NEOCORTICAL NEURONS INVITRO [J].
CONNORS, BW ;
GUTNICK, MJ ;
PRINCE, DA .
JOURNAL OF NEUROPHYSIOLOGY, 1982, 48 (06) :1302-1320
[8]   ASYNCHRONOUS PRESYNAPTIC AND POSTSYNAPTIC ACTIVITY INDUCES ASSOCIATIVE LONG-TERM DEPRESSION IN AREA CA1 OF THE RAT HIPPOCAMPUS IN-VITRO [J].
DEBANNE, D ;
GAHWILER, BH ;
THOMPSON, SM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (03) :1148-1152
[9]   Response of hippocampal synapses to natural stimulation patterns [J].
Dobrunz, LE ;
Stevens, CF .
NEURON, 1999, 22 (01) :157-166
[10]   VISUALIZING UNSTAINED NEURONS IN LIVING BRAIN-SLICES BY INFRARED DIC-VIDEOMICROSCOPY [J].
DODT, HU ;
ZIEGLGANSBERGER, W .
BRAIN RESEARCH, 1990, 537 (1-2) :333-336