Semistability, Finite-Time Stability, Differential Inclusions, and Discontinuous Dynamical Systems Having a Continuum of Equilibria

被引:120
作者
Hui, Qing [1 ]
Haddad, Wassim M. [2 ]
Bhat, Sanjay P. [3 ]
机构
[1] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA
[2] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[3] Indian Inst Technol, Dept Aerosp Engn, Bombay 400076, Maharashtra, India
关键词
Differential inclusions; discontinuous systems; Filippov solutions; finite-time stability; semistability; CONSENSUS PROBLEMS; LYAPUNOV TESTS; CONVERGENCE; INVARIANCE; NETWORKS;
D O I
10.1109/TAC.2009.2029397
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on semistability and finite-time semistability for discontinuous dynamical systems having a continuum of equilibria. Semistability is the property whereby the solutions of a dynamical system converge to Lyapunov stable equilibrium points determined by the system initial conditions. In this paper, we extend the theory of semistability to discontinuous autonomous dynamical systems. In particular, Lyapunov-based tests for sernistability and finite-time semistability for autonomous differential inclusions are established.
引用
收藏
页码:2465 / 2470
页数:6
相关论文
共 19 条
[1]  
Aubin JP., 1984, Differential Inclusions: Set-Valued Maps and Viability Theory, Grundlehren der mathematischen Wissenschaften
[2]  
Bacciotti A., 1999, ESAIM. Control, Optimisation and Calculus of Variations, V4, P361, DOI 10.1051/cocv:1999113
[3]   Nontangency-based Lyapunov tests for convergence and stability in systems having a continuum of equilibria [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (05) :1745-1775
[4]  
Bhat SP, 2003, P AMER CONTR CONF, P2961
[5]  
Brogliato B., 1999, Nonsmooth Mechanics
[6]  
Clarke F. H., 1990, Optimization and nonsmooth analysis, DOI DOI 10.1137/1.9781611971309
[7]  
Clarke F. H., 1998, NONSMOOTH ANAL CONTR, DOI DOI 10.1007/B97650
[8]   Coordination and geometric optimization via distributed dynamical systems [J].
Cortés, J ;
Bullo, F .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (05) :1543-1574
[9]  
Cortés J, 2008, IEEE CONTR SYST MAG, V28, P36, DOI 10.1109/MCS.2008.919306
[10]   Strong invariance and one-sided Lipschitz multifunctions [J].
Donchev, T ;
Ríos, V ;
Wolenski, P .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (05) :849-862