On the libration collinear points in the restricted three-body problem

被引:38
作者
Alzahrani, F. [1 ]
Abouelmagd, Elbaz I. [2 ]
Guirao, Juan L. G. [3 ]
Hobiny, A. [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math Res Grp NAAM, Jeddah, Saudi Arabia
[2] NRIAG, Astron Dept, Celestial Mech Unit, Cairo 11421, Egypt
[3] Univ Politecn Carta Hosp Marina, Dept Matemat Aplicada Estadist, Cartagena 30203, Region De Murci, Spain
来源
OPEN PHYSICS | 2017年 / 15卷 / 01期
关键词
Restricted three-body problem; triaxial rigid bodies; libration points; stability; TRIAXIAL RIGID BODIES; EQUILIBRIUM POINTS; PERIODIC-ORBITS; TRIANGULAR POINTS; STABILITY; OBLATENESS; PRIMARIES; EXISTENCE; RADIATION;
D O I
10.1515/phys-2017-0007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the restricted problem of three bodies when the primaries are triaxial rigid bodies, the necessary and sufficient conditions to find the locations of the three libration collinear points are stated. In addition, the Linear stability of these points is studied for the case of the Euler angles of rotational motion being theta(i) = 0, psi(i) + phi(i) = pi/2, i = 1, 2 accordingly. We underline that the model studied in this paper has special importance in space dynamics when the third body moves in gravitational fields of planetary systems and particularly in a Jupiter model or a problem including an irregular asteroid.
引用
收藏
页码:58 / 67
页数:10
相关论文
共 28 条
  • [1] Abouelmagd E.I., 2016, Appl. Math. Nonlinear Sci, V1, P123, DOI [10.21042/AMNS.2016.1.00010, DOI 10.21042/AMNS.2016.1.00010]
  • [2] Abouelmagd E.I., 2015, APPL MATH INFORM SCI, V9, P1
  • [3] Abouelmagd EI, 2015, APPL MATH INFORM SCI, V9, P2409
  • [4] Periodic orbits around the collinear libration points
    Abouelmagd, Elbaz I.
    Alzahrani, Faris
    Hobiny, Aatef
    Guirao, J. L. G.
    Alhothuali, M.
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (04): : 1716 - 1727
  • [5] A First Order Automated Lie Transform
    Abouelmagd, Elbaz I.
    Mostafa, A.
    Guirao, Juan L. G.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (14):
  • [6] Out of plane equilibrium points locations and the forbidden movement regions in the restricted three-body problem with variable mass
    Abouelmagd, Elbaz I.
    Mostafa, A.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2015, 357 (01)
  • [7] The effect of zonal harmonic coefficients in the framework of the restricted three-body problem
    Abouelmagd, Elbaz I.
    Alhothuali, M. S.
    Guirao, Juan L. G.
    Malaikah, H. M.
    [J]. ADVANCES IN SPACE RESEARCH, 2015, 55 (06) : 1660 - 1672
  • [8] Numerical integration of the restricted three-body problem with Lie series
    Abouelmagd, Elbaz I.
    Guirao, Juan L. G.
    Mostafa, A.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2014, 354 (02) : 369 - 378
  • [9] Reduction the secular solution to periodic solution in the generalized restricted three-body problem
    Abouelmagd, Elbaz I.
    Awad, M. E.
    Elzayat, E. M. A.
    Abbas, Ibrahim A.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2014, 350 (02) : 495 - 505
  • [10] The effect of oblateness in the perturbed restricted three-body problem
    Abouelmagd, Elbaz I.
    Asiri, H. M.
    Sharaf, M. A.
    [J]. MECCANICA, 2013, 48 (10) : 2479 - 2490