Soft computing models to predict the compressive strength of GGBS/FA- geopolymer concrete

被引:63
作者
Ahmed, Hemn U. [1 ]
Mohammed, Azad A. [1 ]
Mohammed, Ahmed [1 ]
机构
[1] Univ Sulaimani, Coll Engn, Civil Engn Dept, Kurdistan, Iraq
关键词
ASH-BASED GEOPOLYMER; LOW-CALCIUM FLY; ALKALI-ACTIVATED SLAG; MECHANICAL-PROPERTIES; SODIUM-HYDROXIDE; ELASTIC-MODULUS; WORKABILITY; BEHAVIOR; PASTE; MICROSTRUCTURE;
D O I
10.1371/journal.pone.0265846
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A variety of ashes used as the binder in geopolymer concrete such as fly ash (FA), ground granulated blast furnace slag (GGBS), rice husk ash (RHA), metakaolin (MK), palm oil fuel ash (POFA), and so on, among of them the FA was commonly used to produce geopolymer concrete. However, one of the drawbacks of using FA as a main binder in geopolymer concrete is that it needs heat curing to cure the concrete specimens, which lead to restriction of using geopolymer concrete in site projects; therefore, GGBS was used as a replacement for FA with different percentages to tackle this problem. In this study, Artificial Neural Network (ANN), M5P-Tree (M5P), Linear Regression (LR), and Multi-logistic regression (MLR) models were used to develop the predictive models for predicting the compressive strength of blended ground granulated blast furnace slag and fly ash based-geopolymer concrete (GGBS/FA-GPC). A comprehensive dataset consists of 220 samples collected in several academic research studies and analyzed to develop the models. In the modeling process, for the first time, eleven effective variable parameters on the compressive strength of the GGBS/FA-GPC, including the Activated alkaline solution to binder ratio (l/b), FA content, SiO2/Al2O3 (Si/Al) of FA, GGBS content, SiO2/CaO (Si/Ca) of GGBS, fine (F) and coarse (C) aggregate content, sodium hydroxide (SH) content, sodium silicate (SS) content, (SS/SH) and molarity (M) were considered as the modeling input parameters. Various statistical assessments such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Scatter Index (SI), OBJ value, and the Coefficient of determination (R-2) were used to evaluate the efficiency of the developed models. The results indicated that the ANN model better predicted the compressive strength of GGBS/FA-GPC mixtures compared to the other models. Moreover, the sensitivity analysis demonstrated that the alkaline liquid to binder ratio, fly ash content, molarity, and sodium silicate content are the most affecting parameter for estimating the compressive strength of the GGBS/FA-GPC.
引用
收藏
页数:28
相关论文
共 109 条
[1]   Implementation of multi-expression programming (MEP), artificial neural network (ANN), and M5P-tree to forecast the compression strength cement-based mortar modified by calcium hydroxide at different mix proportions and curing ages [J].
Abdalla, Aso ;
Salih, Ahmed .
INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2022, 7 (02)
[2]  
Abdel-Gawwad H. A., 2016, HBRC Journal, V12, P13, DOI 10.1016/j.hbrcj.2014.06.008
[3]  
Abhilash P., 2016, INT J CHEMTECH RES
[4]   Compressive strength of geopolymer concrete modified with nano-silica: Experimental and modeling investigations [J].
Ahmed, Hemn Unis ;
Mohammed, Ahmed S. ;
Faraj, Rabar H. ;
Qaidi, Shaker M. A. ;
Mohammed, Azad A. .
CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 16
[5]   Statistical Methods for Modeling the Compressive Strength of Geopolymer Mortar [J].
Ahmed, Hemn Unis ;
Abdalla, Aso A. ;
Mohammed, Ahmed S. ;
Mohammed, Azad A. ;
Mosavi, Amir .
MATERIALS, 2022, 15 (05)
[6]   Compressive Strength of Sustainable Geopolymer Concrete Composites: A State-of-the-Art Review [J].
Ahmed, Hemn Unis ;
Mohammed, Azad A. ;
Rafiq, Serwan ;
Mohammed, Ahmed S. ;
Mosavi, Amir ;
Sor, Nadhim Hamah ;
Qaidi, Shaker M. A. .
SUSTAINABILITY, 2021, 13 (24)
[7]   Use of recycled fibers in concrete composites: A systematic comprehensive review [J].
Ahmed, Hemn Unis ;
Faraj, Rabar H. ;
Hilal, Nahla ;
Mohammed, Azad A. ;
Sherwani, Aryan Far H. .
COMPOSITES PART B-ENGINEERING, 2021, 215
[8]  
Albitar M, 2015, KSCE J CIV ENG, V19, P1445
[9]  
Alshkane YM, 2017, SULAIMANIA J ENG SCI, V4
[10]  
[Anonymous], 2009, EN123903 BS EN