Bi-iteration SVD subspace tracking algorithms

被引:77
作者
Strobach, P
机构
[1] Fachhochschule Furtwangen, Furtwangen
关键词
D O I
10.1109/78.575696
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a class of fast subspace tracking algorithms that arise from a straightforward extension of Bauer's classical bi-iteration to the sequential processing case. The bi-iteration concept has an unexpected potential in subspace tracking. Our new Bi-SVD subspace trackers are well structured and show excellent convergence properties. They outperform the recently introduced TQR-SVD subspace tracking algorithm. Detailed comparisons confirm our claims. An application to rank and data adaptive signal reconstruction is also briefly discussed.
引用
收藏
页码:1222 / 1240
页数:19
相关论文
共 26 条
[2]  
[Anonymous], 1974, INTRO MATRIX COMPUTA
[3]  
BAUER FL, 1957, Z ANGEW MATH PHYS, V8, P214, DOI DOI 10.1007/BF01600502
[4]  
BIENVENU G, 1980, P IEEE ICASSP 80 DEN, P307
[5]   UPDATING SINGULAR VALUE DECOMPOSITION [J].
BUNCH, JR ;
NIELSEN, CP .
NUMERISCHE MATHEMATIK, 1978, 31 (02) :111-129
[6]  
Clint M., 1971, Journal of the Institute of Mathematics and Its Applications, V8, P111
[7]   TRACKING A FEW EXTREME SINGULAR-VALUES AND VECTORS IN SIGNAL-PROCESSING [J].
COMON, P ;
GOLUB, GH .
PROCEEDINGS OF THE IEEE, 1990, 78 (08) :1327-1343
[8]   A TQR-ITERATION BASED ADAPTIVE SVD FOR REAL-TIME ANGLE AND FREQUENCY TRACKING [J].
DOWLING, EM ;
AMMANN, LP ;
DEGROAT, RD .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (04) :914-926
[9]  
FUHRMAN DR, 1987, P SPIE C SAN DIEG
[10]  
Golub G, 2013, Matrix Computations, V4th