Interface and layer periodicity effects on the thermal conductivity of copper-based nanomultilayers with tungsten, tantalum, and tantalum nitride diffusion barriers

被引:21
作者
Cancellieri, Claudia [1 ]
Scott, Ethan A. [2 ]
Braun, Jeffrey [2 ]
King, Sean W. [3 ]
Oviedo, Ron [3 ]
Jezewski, Christopher [3 ]
Richards, John [3 ]
La Mattina, Fabio [1 ]
Jeurgens, Lars P. H. [1 ]
Hopkins, Patrick E. [2 ,4 ,5 ]
机构
[1] Empa, Swiss Fed Labs Mat Sci & Technol, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
[2] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
[3] Intel Corp, Log Technol Dev, Hillsboro, OR 97124 USA
[4] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA
[5] Univ Virginia, Phys Dept, Charlottesville, VA 22904 USA
关键词
65;
D O I
10.1063/5.0019907
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nanomultilayers are complex architectures of materials stacked in sequence with layer thicknesses in the nanometer range. Their application in microelectronics is challenged by their thermal stability, conductivity, and interface reactivity, which can compromise their performance and usability. By using different materials as thermal barriers and by changing their thickness, it is possible to manipulate interfacial effects on thermal transport. In this work, we report on the thermal conductivity of Cu/W, Cu/Ta, and Cu/TaN sputter deposited nanomultilayers with different thicknesses. The resistive interfacial effects are rationalized and discussed also in relation to the structural transformation into a nano-composite upon high-temperature annealing.
引用
收藏
页数:9
相关论文
共 65 条
  • [1] [Anonymous], 2008, THESIS MIT
  • [2] Interfacial effects in multilayers
    Barbee, TW
    [J]. APPLICATIONS OF SYNCHROTRON RADIATION TECHNIQUES TO MATERIALS SCIENCE IV, 1998, 524 : 145 - 151
  • [3] High temperature thermal properties of thin tantalum nitride films
    Bozorg-Grayeli, Elah
    Li, Zijian
    Asheghi, Mehdi
    Delgado, Gil
    Pokrovsky, Alexander
    Panzer, Matthew
    Wack, Daniel
    Goodson, Kenneth E.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (26)
  • [4] A steady-state thermoreflectance method to measure thermal conductivity
    Braun, Jeffrey L.
    Olson, David H.
    Gaskins, John T.
    Hopkins, Patrick E.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (02)
  • [5] Characterization of Ta and TaN diffusion barriers beneath Cu layers using picosecond ultrasonics
    Bryner, Juerg
    Profunser, Dieter M.
    Vollmann, Jacqueline
    Mueller, Elisabeth
    Dual, Juerg
    [J]. ULTRASONICS, 2006, 44 (e1269-e1275) : E1269 - E1275
  • [6] Analysis of heat flow in layered structures for time-domain thermoreflectance
    Cahill, DG
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) : 5119 - 5122
  • [7] Thermometry and thermal transport in micro/nanoscale solid-state devices and structures
    Cahill, DG
    Goodson, KE
    Majumdar, A
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (02): : 223 - 241
  • [8] The effect of thermal treatment on the stress state and evolving microstructure of Cu/W nano-multilayers
    Cancellieri, C.
    Moszner, F.
    Chiodi, M.
    Yoon, S.
    Janczak-Rusch, J.
    Jeurgens, L. P. H.
    [J]. JOURNAL OF APPLIED PHYSICS, 2016, 120 (19)
  • [9] Thermal flux limited electron Kapitza conductance in copper-niobium multilayers
    Cheaito, Ramez
    Hattar, Khalid
    Gaskins, John T.
    Yadav, Ajay K.
    Duda, John C.
    Beechem, Thomas E.
    Ihlefeld, Jon F.
    Piekos, Edward S.
    Baldwin, Jon K.
    Misra, Amit
    Hopkins, Patrick E.
    [J]. APPLIED PHYSICS LETTERS, 2015, 106 (09)
  • [10] EFFECT OF LAYER-THICKNESS FLUCTUATIONS ON SUPERLATTICE DIFFRACTION
    CLEMENS, BM
    GAY, JG
    [J]. PHYSICAL REVIEW B, 1987, 35 (17): : 9337 - 9340