Skolem plus Tetration Is Well-Ordered

被引:0
|
作者
Barra, Mathias [1 ]
Gerhardy, Philipp [1 ]
机构
[1] Univ Oslo, Dept Math, N-0316 Oslo, Norway
来源
MATHEMATICAL THEORY AND COMPUTATIONAL PRACTICE | 2009年 / 5635卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of whether a certain set of number-theoretic functions - defined via tetration (i.e. iterated exponentiation) - is well-ordered by the majorisation relation, was posed by Skolem in 1956. We prove here that indeed it is a computable well-order, and give a lower bound tau(0) on its ordinal.
引用
收藏
页码:11 / 20
页数:10
相关论文
共 50 条
  • [1] The Ordinal of Skolem plus Tetration Is τ0
    Barra, Mathias
    Gerhardy, Philipp
    PROGRAMS, PROOFS, PROCESSES, 2010, 6158 : 31 - 38
  • [2] The Well-Ordered Republic
    MacGilvray, Eric
    PERSPECTIVES ON POLITICS, 2023, 21 (03) : 1035 - 1036
  • [3] THE 'WELL-ORDERED LIFE'
    WILLIAMS, M
    SOUTHERN REVIEW-BATON ROUGE, 1980, 16 (03): : 601 - 601
  • [4] On "well-ordered" aggregates
    Dixon, AC
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1907, 4 : 18 - 20
  • [5] Rousseau or well-ordered freedom
    Tenorth, E
    ZEITSCHRIFT FUR PADAGOGIK, 2005, 51 (02): : 291 - 300
  • [6] EXISTENCE OF WELL-ORDERED MODELS
    KOTLARSKI, H
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1974, 22 (05): : 459 - 462
  • [7] POINTCLASSES AND WELL-ORDERED UNIONS
    JACKSON, S
    MARTIN, DA
    LECTURE NOTES IN MATHEMATICS, 1983, 1019 : 56 - 66
  • [8] A Clean, Well-Ordered Place
    Yarbrough, Steve
    AMERICAN SCHOLAR, 2023, 92 (04): : 17 - 19
  • [9] On the exponentiation of well-ordered series
    Wrinch, D
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1919, 19 : 219 - 233
  • [10] UNIONS OF WELL-ORDERED SETS
    HOWARD, P
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1994, 56 : 117 - 124