Shot noise suppression at one-dimensional hopping

被引:43
作者
Korotkov, AN [1 ]
Likharev, KK [1 ]
机构
[1] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
来源
PHYSICAL REVIEW B | 2000年 / 61卷 / 23期
关键词
D O I
10.1103/PhysRevB.61.15975
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have carried out a preliminary analysis of shot noise at hopping, focusing on uniform one-dimensional (1D) arrays of sites separated by N tunnel barriers. The results show that at low temperatures the low-frequency density of the shot noise varies from 1/N to 1 of the Schottky value, depending on the geometry, electron density, and Coulomb interaction strength. An interesting feature is omega(-1/3) dependence of the current spectral density at intermediate frequencies, which reflects self-similarity of the fluctuations at different size scales.
引用
收藏
页码:15975 / 15987
页数:13
相关论文
共 50 条
  • [31] QUANTUM-MECHANICAL HOPPING IN ONE-DIMENSIONAL SUPERSTRUCTURE
    SUGI, M
    NEMBACH, K
    MOBIUS, D
    KUHN, H
    SOLID STATE COMMUNICATIONS, 1974, 15 (11-1) : 1867 - 1870
  • [32] SOME COMMENTS ON HOPPING IN RANDOM ONE-DIMENSIONAL SYSTEMS
    BERNASCONI, J
    BEYELER, HU
    PHYSICAL REVIEW B, 1980, 21 (08): : 3745 - 3747
  • [33] An effective description of a periodic one-dimensional hopping model
    ZHANG YunXin Shanghai Key Laboratory for Contemporary Applied Mathematics
    Science China(Physics,Mechanics & Astronomy), 2011, Mechanics & Astronomy)2011 (03) : 401 - 405
  • [34] A ONE-DIMENSIONAL INTEGRABLE MODEL OF FERMIONS WITH MULTIPARTICLE HOPPING
    BARIEV, RZ
    KLUMPER, A
    SCHADSCHNEIDER, A
    ZITTARTZ, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (09): : 2437 - 2444
  • [35] EFFECTS OF CORRELATED HOPPING ON ONE-DIMENSIONAL COAGULATION REACTION
    PAK, H
    PARK, HB
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1993, 26 : S476 - S478
  • [36] ONE-DIMENSIONAL HOPPING DIFFUSION IN A COHERENT PHONON FIELD
    LUBIN, D
    GOLDHIRSCH, I
    PHYSICAL REVIEW LETTERS, 1990, 64 (17) : 2050 - 2054
  • [37] HOPPING TRANSPORT IN ONE-DIMENSIONAL PERIODIC LATTICE SYSTEMS
    SCHNEIDER, WR
    HELVETICA PHYSICA ACTA, 1983, 56 (04): : 987 - 988
  • [38] One-Dimensional Quasicrystals with Power-Law Hopping
    Deng, X.
    Ray, S.
    Sinha, S.
    Shlyapnikov, G., V
    Santos, L.
    PHYSICAL REVIEW LETTERS, 2019, 123 (02)
  • [39] Suppression of chaos in a one-dimensional mapping
    Codreanu, S
    Danca, M
    JOURNAL OF BIOLOGICAL PHYSICS, 1997, 23 (01) : 1 - 9
  • [40] Suppression of Chaos in a One-dimensional Mapping
    STELIANA CODREANU
    MARIUS DANCA
    Journal of Biological Physics, 1997, 23 : 1 - 9