An ab initio study of the (H2O)20H+ and (H2O)21H+ water clusters

被引:26
|
作者
Kus, Tomasz [1 ]
Lotrich, Victor F.
Perera, Ajith
Bartlett, Rodney J.
机构
[1] Univ Florida, Dept Chem, Gainesville, FL 32611 USA
关键词
FREE JET EXPANSION; MONTE-CARLO; HYDRATED PROTONS; IONS; SIMULATION; REACTIVITY; STABILITY; EVOLUTION; ENTROPY; ENERGY;
D O I
10.1063/1.3231684
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The study of the minimum Born-Oppenheimer structures of the protonated water clusters, (H2O)(n)H+, is performed for n=20 and 21. The structures belonging to four basic morphologies are optimized at the Hartree-Fock, second-order many-body perturbation theory and coupled cluster level, with the 6-31G, 6-31G*, and 6-311G** basis sets, using the parallel ACES III program. The lowest energy structure for each n is found to be the cagelike form filled with H2O, with the proton located on the surface. The cage is the distorted dodecahedron for the 21-mer case, and partially rearranged dodecahedral structure for the 20-mer. The results confirm that the lowest energy structure of the magic number n=21 clusters corresponds to a more stable form than that of the 20-mer clusters. (C) 2009 American Institute of Physics. [doi:10.1063/1.3231684]
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Revisit the landscape of protonated water clusters H+(H2O)n with n=10-17: An ab initio global search
    Shi, Ruili
    Li, Keyao
    Su, Yan
    Tang, Lingli
    Huang, Xiaoming
    Sai, Linwei
    Zhao, Jijun
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (17)
  • [12] Assessment of Two Surface Monte Carlo (TSMC) method to find stationary points of (H2O)15 and (H2O)20 clusters
    Pradipta Bandyopadhyay
    Theoretical Chemistry Accounts, 2008, 120 : 307 - 312
  • [13] Assessment of Two Surface Monte Carlo (TSMC) method to find stationary points of (H2O)15 and (H2O)20 clusters
    Bandyopadhyay, Pradipta
    THEORETICAL CHEMISTRY ACCOUNTS, 2008, 120 (1-3) : 307 - 312
  • [14] Spectroscopic snapshot for neutral water nonamer (H2O)9: Adding a H2O onto a hydrogen bond-unbroken edge of (H2O)8
    Zheng, Huijun
    Zhang, Yang-Yang
    Wang, Tiantong
    Jiang, Shuai
    Yan, Wenhui
    Wang, Chong
    Zhao, Ya
    Hu, Han-Shi
    Yang, Jiayue
    Zhang, Weiqing
    Wu, Guorong
    Dai, Dongxu
    Li, Gang
    Li, Jun
    Yang, Xueming
    Jiang, Ling
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (01)
  • [15] Destabilization of noble-gas hydrides by a water environment: calculations for HXeOH@(H2O)n, HXeOXeH@(H2O)n, HXeBr@(H2O)n, HXeCCH@(H2O)n
    Tsivion, Ehud
    Rasanen, Markku
    Gerber, R. Benny
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (30) : 12610 - 12616
  • [16] Transition states for hydride-water (H-)(H2O)n clusters, n=2-6, 20
    Anick, David J.
    Leung, Kevin
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2009, 916 (1-3): : 61 - 71
  • [17] DFT study of the interactions of H2O, O2 and H2O + O2 with TiO2 (101) surface
    Du, Zheng
    Zhao, Cuihua
    Chen, Jianhua
    Zhang, Dongyun
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 136 : 173 - 180
  • [18] H•(H2O)n Clusters: Microsolvation of the Hydrogen Atom via Molecular ab Initio Gradient Embedded Genetic Algorithm (GEGA)
    Alexandrova, Anastassia N.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (48) : 12591 - 12599
  • [19] Hydrogen-Bond Networks in Water Clusters (H2O)20: An Exhaustive Quantum-Chemical Analysis
    Tokmachev, Andrei M.
    Tchougreeff, Andrei L.
    Dronskowski, Richard
    CHEMPHYSCHEM, 2010, 11 (02) : 384 - 388
  • [20] Phase transitions in free water nanoparticles. Theoretical modeling of [H2O]48 and [H2O]118
    Vitek, Ales
    Kalus, Rene
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (16) : 10532 - 10537