Construction of a surface integral under local Malliavin assumptions, and related integration by parts formulas

被引:5
作者
Bonaccorsi, Stefano [1 ]
Da Prato, Giuseppe [2 ]
Tubaro, Luciano [1 ]
机构
[1] Univ Trento, Dipartimento Matemat, Via Sommar 14, I-38123 Povo, Italy
[2] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
关键词
Gaussian measures; Surface measures in infinite-dimensional spaces; Integration-by-parts formulae; STOCHASTIC REFLECTION PROBLEM; SMOOTH CONVEX SET; ABSOLUTE CONTINUITY; EQUATION; SUPREMUM; SPACE; SPDES; LAW;
D O I
10.1007/s00028-017-0423-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the sets defined in an infinite-dimensional Hilbert space, where g is suitably related to a reference Gaussian measure in H. We first show how to define a surface measure that is related to . This allows to introduce an integration-by-parts formula in , which can be applied in several important constructions, as is the case where is the law of a (Gaussian) stochastic process and H is the space of its trajectories.
引用
收藏
页码:871 / 897
页数:27
相关论文
共 35 条
[1]  
AIRAULT H, 1988, B SCI MATH, V112, P3
[2]  
[Anonymous], 2002, HDB BROWNIAN MOTION, DOI DOI 10.1007/978-3-0348-8163-0
[3]  
[Anonymous], 2007, ESPACES FONCTIONNELS
[4]   Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space II [J].
Barbu, Viorel ;
Da Prato, Giuseppe ;
Tubaro, Luciano .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (03) :699-724
[5]   KOLMOGOROV EQUATION ASSOCIATED TO THE STOCHASTIC REFLECTION PROBLEM ON A SMOOTH CONVEX SET OF A HILBERT SPACE [J].
Barbu, Viorel ;
Da Prat, Giuseppe ;
Tubaro, Luciano .
ANNALS OF PROBABILITY, 2009, 37 (04) :1427-1458
[6]  
Bogachev V.I., 1998, GAUSSIAN MEASURES
[7]  
Bogachev VI., 2007, MEASURE THEORY, DOI [10.1007/978-3-540-34514-5, DOI 10.1007/978-3-540-34514-5]
[8]   Surface Measures Generated by Differentiable Measures [J].
Bogachev, Vladimir I. ;
Malofeev, Ilya I. .
POTENTIAL ANALYSIS, 2016, 44 (04) :767-792
[9]   Integration by parts on the Brownian Meander [J].
Bonaccorsi, S ;
Zambotti, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (03) :875-883
[10]   Traces of Sobolev functions on regular surfaces in infinite dimensions [J].
Celada, Pietro ;
Lunardi, Alessandra .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (04) :1948-1987