Efficient and Low-Backaction Quantum Measurement Using a Chip-Scale Detector

被引:21
作者
Rosenthal, Eric, I [1 ,2 ,3 ]
Schneider, Christian M. F. [4 ,5 ]
Malnou, Maxime [2 ,3 ]
Zhao, Ziyi [1 ,2 ,3 ]
Leditzky, Felix [1 ,3 ,6 ,7 ,8 ]
Chapman, Benjamin J. [9 ]
Wustmann, Waltraut [10 ]
Ma, Xizheng [1 ,2 ,3 ]
Palken, Daniel A. [1 ,2 ,3 ]
Zanner, Maximilian F. [4 ,5 ]
Vale, Leila R. [3 ]
Hilton, Gene C. [3 ]
Gao, Jiansong [2 ,3 ]
Smith, Graeme [1 ,2 ,3 ,8 ]
Kirchmair, Gerhard [4 ,5 ]
Lehnert, K. W. [1 ,2 ,3 ]
机构
[1] Univ Colorado, JILA, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[3] NIST, Boulder, CO 80305 USA
[4] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[5] Univ Innsbruck, Inst Expt Phys, A-6020 Innsbruck, Austria
[6] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[7] Univ Illinois, Illinois Quantum Informat Sci & Technol Ctr, Urbana, IL 61801 USA
[8] Univ Colorado, Ctr Theory Quantum Matter, Boulder, CO 80309 USA
[9] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA
[10] Lab Phys Sci, College Pk, MD 20740 USA
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
SUPERCONDUCTING QUBIT; NOISE;
D O I
10.1103/PhysRevLett.126.090503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Superconducting qubits are a leading platform for scalable quantum computing and quantum error correction. One feature of this platform is the ability to perform projective measurements orders of magnitude more quickly than qubit decoherence times. Such measurements are enabled by the use of quantum-limited parametric amplifiers in conjunction with ferrite circulators-magnetic devices which provide isolation from noise and decoherence due to amplifier backaction. Because these nonreciprocal elements have limited performance and are not easily integrated on chip, it has been a long-standing goal to replace them with a scalable alternative. Here, we demonstrate a solution to this problem by using a superconducting switch to control the coupling between a qubit and amplifier. Doing so, we measure a transmon qubit using a single, chip-scale device to provide both parametric amplification and isolation from the bulk of amplifier backaction. This measurement is also fast, high fidelity, and has 70% efficiency, comparable to the best that has been reported in any superconducting qubit measurement. As such, this work constitutes a high-quality platform for the scalable measurement of superconducting qubits.
引用
收藏
页数:8
相关论文
共 77 条
[1]  
Abdo B., ARXIV200601918
[2]   Active protection of a superconducting qubit with an interferometric Josephson isolator [J].
Abdo, Baleegh ;
Bronn, Nicholas T. ;
Jinka, Oblesh ;
Olivadese, Salvatore ;
Corcoles, Antonio D. ;
Adiga, Vivekananda P. ;
Brinks, Markus ;
Lake, Russell E. ;
Wu, Xian ;
Pappas, David P. ;
Chow, Jerry M. .
NATURE COMMUNICATIONS, 2019, 10
[3]   Josephson Directional Amplifier for Quantum Measurement of Superconducting Circuits [J].
Abdo, Baleegh ;
Sliwa, Katrina ;
Shankar, S. ;
Hatridge, Michael ;
Frunzio, Luigi ;
Schoelkopf, Robert ;
Devoret, Michel .
PHYSICAL REVIEW LETTERS, 2014, 112 (16)
[4]   Repeated quantum error detection in a surface code [J].
Andersen, Christian Kraglund ;
Remm, Ants ;
Lazar, Stefania ;
Krinner, Sebastian ;
Lacroix, Nathan ;
Norris, Graham J. ;
Gabureac, Mihai ;
Eichler, Christopher ;
Wallraff, Andreas .
NATURE PHYSICS, 2020, 16 (08) :875-+
[5]   Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits [J].
Andersen, Christian Kraglund ;
Remrm, Ants ;
Lazar, Stefania ;
Krinner, Sebastian ;
Heinsoo, Johannes ;
Besse, Jean-Claude ;
Gabureac, Mihai ;
Wallraff, Andreas ;
Eichler, Christopher .
NPJ QUANTUM INFORMATION, 2019, 5
[6]   Closing a quantum feedback loop inside a cryostat: Autonomous state preparation and long-time memory of a superconducting qubit [J].
Andersen, Christian Kraglund ;
Kerckhoff, Joseph ;
Lehnert, Konrad W. ;
Chapman, Benjamin J. ;
Molmer, Klaus .
PHYSICAL REVIEW A, 2016, 93 (01)
[7]   Analog information processing at the quantum limit with a Josephson ring modulator [J].
Bergeal, N. ;
Vijay, R. ;
Manucharyan, V. E. ;
Siddiqi, I. ;
Schoelkopf, R. J. ;
Girvin, S. M. ;
Devoret, M. H. .
NATURE PHYSICS, 2010, 6 (04) :296-302
[8]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[9]   Quantum nondemolition measurements: The route from toys to tools [J].
Braginsky, VB ;
Khalili, FY .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :1-11
[10]   General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED [J].
Bultink, C. C. ;
Tarasinski, B. ;
Haandbaek, N. ;
Poletto, S. ;
Haider, N. ;
Michalak, D. J. ;
Bruno, A. ;
DiCarlo, L. .
APPLIED PHYSICS LETTERS, 2018, 112 (09)