Biased Continuous-Time Random Walks with Mittag-Leffler Jumps

被引:12
作者
Michelitsch, Thomas M. [1 ]
Polito, Federico [2 ]
Riascos, Alejandro P. [3 ]
机构
[1] Sorbonne Univ, CNRS UMR 7190, Inst Jean le Rond dAlembert, 4 Pl Jussieu, F-75252 Paris 05, France
[2] Univ Torino, Dept Math Giuseppe Peano, I-10123 Turin, Italy
[3] Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Mexico City 01000, DF, Mexico
关键词
space-time generalizations of Poisson process; biased continuous-time random walks; Bernstein functions; Prabhakar fractional calculus; FRACTIONAL POISSON-PROCESS; RELAXATION; EQUATIONS; MODELS;
D O I
10.3390/fractalfract4040051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct admissible circulant Laplacian matrix functions as generators for strictly increasing random walks on the integer line. These Laplacian matrix functions refer to a certain class of Bernstein functions. The approach has connections with biased walks on digraphs. Within this framework, we introduce a space-time generalization of the Poisson process as a strictly increasing walk with discrete Mittag-Leffler jumps time-changed with an independent (continuous-time) fractional Poisson process. We call this process 'space-time Mittag-Leffler process'. We derive explicit formulae for the state probabilities which solve a Cauchy problem with a Kolmogorov-Feller (forward) difference-differential equation of general fractional type. We analyze a "well-scaled" diffusion limit and obtain a Cauchy problem with a space-time convolution equation involving Mittag-Leffler densities. We deduce in this limit the 'state density kernel' solving this Cauchy problem. It turns out that the diffusion limit exhibits connections to Prabhakar general fractional calculus. We also analyze in this way a generalization of the space-time Mittag-Leffler process. The approach of constructing good Laplacian generator functions has a large potential in applications of space-time generalizations of the Poisson process and in the field of continuous-time random walks on digraphs.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条
  • [41] SEMI-ANALYTICAL VIEW OF TIME-FRACTIONAL PDES WITH PROPORTIONAL DELAYS PERTAINING TO INDEX AND MITTAG-LEFFLER MEMORY INTERACTING WITH HYBRID TRANSFORMS
    SHI, L. E. I.
    RASHID, S. A. I. M. A.
    SULTANA, S. O. B. I. A.
    KHALID, A. A. S. M. A.
    AGARWAL, P. R. A. V. E. E. N.
    OSMAN, M. O. H. A. M. E. D. S.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (04)
  • [42] Scaling Properties of Field-Induced Superdiffusion in Continuous Time Random Walks
    Burioni, R.
    Gradenigo, G.
    Sarracino, A.
    Vezzani, A.
    Vulpiani, A.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 62 (04) : 514 - 520
  • [43] Backward jump continuous-time random walk: An application to market trading
    Gubiec, Tomasz
    Kutner, Ryszard
    PHYSICAL REVIEW E, 2010, 82 (04):
  • [44] Chover-Type Laws of the Iterated Logarithm for Continuous Time Random Walks
    Hwang, Kyo-Shin
    Wang, Wensheng
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [45] Continuous-time quantum walks on nonorientable surfaces: analytical solutions for Mobius strips and Klein bottles
    Li, Pengcheng
    Zhang, Zhongzhi
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (28)
  • [46] Continuous-time random-walk model for anomalous diffusion in expanding media
    Le Vot, F.
    Abad, E.
    Yuste, S. B.
    PHYSICAL REVIEW E, 2017, 96 (03)
  • [47] Correlated continuous-time random walk in a velocity field: Anomalous bifractional crossover
    Liu, Jian
    Bao, Jing-Dong
    Chen, Xiaosong
    PHYSICAL REVIEW E, 2020, 102 (06)
  • [48] Identification of linear continuous-time systems under irregular and random output sampling
    Mu, Biqiang
    Guo, Jin
    Wang, Le Yi
    Yin, George
    Xu, Lijian
    Zheng, Wei Xing
    AUTOMATICA, 2015, 60 : 100 - 114
  • [49] Exploring a new discrete delayed Mittag-Leffler matrix function to investigate finite-time stability of Riemann-Liouville fractional-order delay difference systems
    Du, Feifei
    Lu, Jun-Guo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 9856 - 9878
  • [50] GENERALIZED CONTINUOUS TIME RANDOM WALKS, MASTER EQUATIONS, AND FRACTIONAL FOKKER-PLANCK EQUATIONS
    Angstmann, C. N.
    Donnelly, I. C.
    Henry, B. I.
    Langlands, T. A. M.
    Straka, P.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (04) : 1445 - 1468