Growth of a Surface-Tethered, All-Carbon Backboned Fluoropolymer by Photoactivated Molecular Layer Deposition

被引:15
作者
Closser, Richard G. [1 ]
Lillethorup, Mie [3 ]
Bergsman, David S. [4 ]
Bent, Stacey F. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] RadiSurf Aps, Arresovej 5B, DK-8240 Risskov, Denmark
[4] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
molecular layer deposition; fluorocarbon polymer; organic thin film; photoinitiated; radical polymerization; photolithography; CHEMICAL-VAPOR-DEPOSITION; LITHIUM-ION BATTERIES; POLYUREA FILMS; THIN-FILM; 1,5-HEXADIENE; COPOLYMERS; CHEMISTRY; POLYMERS; ESCA; XPS;
D O I
10.1021/acsami.9b03462
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The synthesis of an all-carbon backboned fluoropolymer using photoactivated molecular layer deposition (pMLD) is developed. pMLD is a vapor-phase, layer-by-layer, organic thin film synthesis method utilizing UV light, allowing for the creation of materials previously unavailable via thermal MLD. The carbon backbone is achieved by reacting an iodine-containing fluorocarbon monomer (1,4-diiodooctafluorobutane) and a diene monomer (1,5-hexadiene) under UV irradiation in a step-growth polymerization sequence. The polymerization occurs with a growth rate of 1.3 angstrom/cycle, forming a copolymer containing hydrocarbon and fluorocarbon segments. X-ray photoelectron spectroscopy (XPS) was used to confirm the formation of new carbon-carbon bonds and quantify the final film composition. In situ XPS thermal annealing experiments confirm the film stability up to 400 degrees C. The ability to pattern the fluoropolymer on a surface is demonstrated using a photomask, suggesting that these films could be incorporated into photolithographic processes. Together, these results demonstrate that pMLD can be used to synthesize carbon backboned films with photopatterning ability, expanding the available chemistries and potential applications of MLD polymers.
引用
收藏
页码:21988 / 21997
页数:10
相关论文
共 73 条
[1]  
[Anonymous], 2000, KIRK OTHMER ENCY CHE
[2]   Highly Conductive and Conformal Poly(3,4-ethylenedioxythiophene) (PEDOT) Thin Films via Oxidative Molecular Layer Deposition [J].
Atanasov, Sarah E. ;
Losego, Mark D. ;
Gong, Bo ;
Sachet, Edward ;
Maria, Jon-Paul ;
Williams, Philip S. ;
Parsons, Gregory N. .
CHEMISTRY OF MATERIALS, 2014, 26 (11) :3471-3478
[3]  
Beamson G., 1992, HIGH RESOLUTION XPS, DOI DOI 10.1002/ADMA.19930051035
[4]  
Bent S., 2010, MRS ONLINE P LIBR, V1249
[5]   Mechanistic Studies of Chain Termination and Monomer Absorption in Molecular Layer Deposition [J].
Bergsman, David S. ;
Closser, Richard G. ;
Bent, Stacey F. .
CHEMISTRY OF MATERIALS, 2018, 30 (15) :5087-5097
[6]   Effect of Backbone Chemistry on the Structure of Polyurea Films Deposited by Molecular Layer Deposition [J].
Bergsman, David S. ;
Closser, Richard G. ;
Tassone, Christopher J. ;
Clemens, Bruce M. ;
Nordlund, Dennis ;
Bent, Stacey F. .
CHEMISTRY OF MATERIALS, 2017, 29 (03) :1192-1203
[7]  
Calculated Using Advanced Chemistry Development (ACD/ Labs), 2018, CALC US ADV CHEM DEV
[8]  
Carey F.A., 2007, Advanced Organic Chemistry Part B: Reaction and Synthesis, P861
[9]  
Carletto A, 2017, J PHYS COMMUN, V1, DOI 10.1088/2399-6528/aa9399
[10]  
Carraher C., 2008, Seymour/Carraher'sPolymer Chemistry, VSeventh