Impact of PM2.5 and PM10 Emissions on Changes of Their Concentration Levels in Lithuania: A Case Study

被引:6
|
作者
Bycenkiene, Steigvile [1 ]
Khan, Abdullah [1 ]
Bimbaite, Vilma [2 ]
机构
[1] SRI Ctr Phys Sci & Technol, Sauletekio Ave 3, LT-10257 Vilnius, Lithuania
[2] Environm Protect Agcy, A Juozapaviciaus Str 9, LT-09311 Vilnius, Lithuania
关键词
particulate matter; black carbon; emissions; trend; LONG-TERM EXPOSURE; PERFORMANCE; POLICIES; EUROPE;
D O I
10.3390/atmos13111793
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Due to negative effects on human health and visibility, atmospheric particulate matter (PM) is a prioritized contaminant for urban air pollution management. Over the past few decades, managing emissions have been a top priority. This paper investigated PM national inventory data and mass concentration trends for Lithuania. This analysis considers primary (sum of filterable and condensable) PM2.5 and PM10 emissions from point, mobile on-road and off-road, industry, agriculture, and waste sectors. In this study, by examining both the emissions and the mass concentrations of PM10, the effects of emissions decreasing with a concentration decrease were revealed. The slower decreasing tendency of PM10 and BC (0.03 Gg/year) than that of PM2.5 (0.1 Gg/year) should be noted. Furthermore, the correlation analysis also finds that the increase in PM10 from stationary and mobile combustion sources is closely related to the increase in the contribution to the pollution level.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Predictability analysis of the PM2.5 and PM10 concentration in Budapest
    Ferenczi, Zita
    IDOJARAS, 2013, 117 (04): : 359 - 375
  • [2] Temporal variations of PM2.5 and PM10 concentration over Hyderabad
    Ajay Kumar M.C.
    Vinay Kumar P.
    Venkateswara Rao P.
    Nature Environment and Pollution Technology, 2020, 19 (05) : 1871 - 1878
  • [3] Comparison of PM2.5 and PM10 monitors
    Williams, R
    Suggs, J
    Rodes, C
    Lawless, P
    Zweidinger, R
    Kwok, R
    Creason, J
    Sheldon, L
    JOURNAL OF EXPOSURE ANALYSIS AND ENVIRONMENTAL EPIDEMIOLOGY, 2000, 10 (05): : 497 - 505
  • [4] Comparison of PM2.5 and PM10 monitors
    RON WILLIAMS
    JACK SUGGS
    CHARLES RODES
    PHIL LAWLESS
    ROY ZWEIDINGER
    RICHARD KWOK
    JOHN CREASON
    LINDA SHELDON
    Journal of Exposure Science & Environmental Epidemiology, 2000, 10 : 497 - 505
  • [5] Predicting PM10 and PM2.5 concentration in container ports: A deep learning approach
    Park, So -Young
    Woo, Su-Han
    Lim, Changwon
    TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 2023, 115
  • [6] PM2.5, PM10 and bronchiolitis severity: A cohort study
    Milani, Gregorio P.
    Cafora, Marco
    Favero, Chiara
    Luganini, Anna
    Carugno, Michele
    Lenzi, Erica
    Pistocchi, Anna
    Pinatel, Eva
    Pariota, Luigi
    Ferrari, Luca
    Bollati, Valentina
    PEDIATRIC ALLERGY AND IMMUNOLOGY, 2022, 33 (10)
  • [7] Source contributions to PM2.5 and PM10 at an urban background and a street location
    Keuken, M. P.
    Moerman, M.
    Voogt, M.
    Blom, M.
    Weijers, E. P.
    Rockmann, T.
    Dusek, U.
    ATMOSPHERIC ENVIRONMENT, 2013, 71 : 26 - 35
  • [8] Measuring and Modelling the Concentration of Vehicle-Related PM2.5 and PM10 Emissions Based on Neural Networks
    Shepelev, Vladimir
    Glushkov, Aleksandr
    Slobodin, Ivan
    Cherkassov, Yuri
    MATHEMATICS, 2023, 11 (05)
  • [9] Variability of levels and composition of PM10 and PM2.5 in the Barcelona metro system
    Querol, X.
    Moreno, T.
    Karanasiou, A.
    Reche, C.
    Alastuey, A.
    Viana, M.
    Font, O.
    Gil, J.
    de Miguel, E.
    Capdevila, M.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (11) : 5055 - 5076
  • [10] Does PM10 influence the prediction of PM2.5?
    Choudhary, Rashmi
    Agarwal, Amit
    2022 SMART CITIES SYMPOSIUM PRAGUE (SCSP), 2022,