Functional limit theorems for U-statistics indexed by a random walk

被引:3
作者
Cabus, P
Guillotin-Plantard, N
机构
[1] Univ Lyon 1, UFR Math, Probabil Lab, F-69622 Villeurbanne, France
[2] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
random walk; random scenery; U-statistics; functional limit theorem;
D O I
10.1016/S0304-4149(02)00127-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (S-n)(ngreater than or equal to0) be a Z(d)-random walk and (xi(x))(xis an element ofZd) be a sequence of independent and identically distributed R-valued random variables, independent of the random walk. Let h be a measurable, symmetric function defined on R-2 with values in R. We study the weak convergence of the sequence U-n, n is an element of N, with values in D[0, 1] the set of right continuous real-valued functions with left limits, defined by Sigma(t,j=0)([nt])h(xi(Si), xi(Sj)), t is an element of [0, 1]. The walls steps will be essentially assumed centered and the space dimension d = 2 or greater than or equal to3. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:143 / 160
页数:18
相关论文
共 13 条
[1]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[2]   A CENTRAL LIMIT-THEOREM FOR TWO-DIMENSIONAL RANDOM-WALKS IN RANDOM SCENERIES [J].
BOLTHAUSEN, E .
ANNALS OF PROBABILITY, 1989, 17 (01) :108-115
[3]   A model of continuous polymers with random charges [J].
Buffet, E ;
Pule, JV .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (10) :5143-5152
[4]   LIMIT-THEOREM RELATED TO A NEW CLASS OF SELF SIMILAR PROCESSES [J].
KESTEN, H ;
SPITZER, F .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 50 (01) :5-25
[5]  
KINGMAN JFC, 1968, J ROY STAT SOC B, V30, P499
[6]  
Lawler G F., 1991, Intersections of Random Walks
[7]  
Lee AJ, 1990, U STAT THEORY PRACTI
[8]  
Lewis T. M., 1993, J THEORET PROBAB, V6, P209
[9]   Thermodynamics of a Brownian bridge polymer model in a random environment [J].
Martinez, S ;
Petritis, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (06) :1267-1279
[10]  
NEUHAUS G, 1977, J MULTIVARIATE ANAL, V7, P424, DOI 10.1016/0047-259X(77)90083-5