Existence of positive periodic solution of periodic time-dependent predator-prey system with impulsive effects

被引:5
作者
Hui, J [1 ]
Chen, LS
机构
[1] Guangxi Inst Technol, Dept Informat & Computat Sci, Liuzhou 545006, Peoples R China
[2] Acad Sinica, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
existence; stability; periodic solution; impulsive effects;
D O I
10.1007/s10114-004-0333-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The general system of differential equations describing predator-prey dynamics with impulsive effects is modified by the assumption that the coefficients are periodic functions of time. By use of standard techniques of bifurcation theory, it is known that this system has a positive periodic solution provided the time average of the predator's net uninhibited death rate is in a suitable range. The bifurcation is from the periodic solution of the time-dependent logistic equation for the prey (which results in the absence of predator).
引用
收藏
页码:423 / 432
页数:10
相关论文
共 15 条
[1]   A PERIODIC PREY PREDATOR SYSTEM [J].
AMINE, Z ;
ORTEGA, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 185 (02) :477-489
[2]  
Bainov D, 1993, IMPULSIVE DIFFERENTI
[3]  
Crandal M.G., 1971, J. Funct. Anal, V8, P321, DOI 10.1016/0022-1236(71)90015-2
[4]  
CRANDALL MG, 1973, ARCH RATION MECH AN, V52, P161, DOI 10.1007/BF00282325
[5]   INVASION AND CHAOS IN A PERIODICALLY PULSED MASS-ACTION CHEMOSTAT [J].
FUNASAKI, E ;
KOT, M .
THEORETICAL POPULATION BIOLOGY, 1993, 44 (02) :203-224
[6]  
Halanay A., 1996, DIFFERENTIAL EQUATIO
[7]  
Krasnoselskii M. A., 1964, TOPOLOGICAL METHODS
[8]  
Lakmeche A, 2000, DYN CONTIN DISCRET I, V7, P265
[9]  
Liu X., 1998, IMA Journal of Mathematical Control and Information, V15, P269, DOI 10.1093/imamci/15.3.269
[10]   IMPULSIVE STABILIZATION AND APPLICATIONS TO POPULATION-GROWTH MODELS [J].
LIU, XZ .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (01) :381-395