CALDERON-ZYGMUND SINGULAR INTEGRALS IN CENTRAL MORREY-ORLICZ SPACES

被引:0
作者
Maligranda, Lech [1 ]
Matsuoka, Katsuo [2 ]
机构
[1] Lulea Univ Technol, Dept Engn Sci & Math, SE-97187 Lulea, Sweden
[2] Nihon Univ, Coll Econ, Chiyoda Ku, 1-3-2 Misaki Cho, Tokyo 1018360, Japan
基金
日本学术振兴会;
关键词
Calderon-Zygmund operator; Calderon-Zygmund singular integral; Orlicz function; Orlicz space; weak Orlicz space; central Morrey-Orlicz space; weak central Morrey-Orlicz space; modular inequality; lambda-central mean oscillation-Orlicz space; weak lambda-central mean oscillation-Orlicz space; MAXIMAL FUNCTIONS; HARDY-SPACES; OPERATORS; INEQUALITIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the strong-type and weak-type estimates for the Calderon-Zygmund singular integrals on central Morrey-Orlicz and weak central Morrey-Orlicz spaces defined in our earlier paper [26]. Next part has similar investigations between distinct central Morrey-Orlicz and weak central Morrey-Orlicz spaces. Then we define the lambda-central mean oscillation-Orlicz spaces and its weak version investigating also some estimates for a modified Calderon-Zygmund singular integrals. Also, we show boundedness of a modified Calderon-Zygmund singular integrals from central Morrey-Orlicz spaces to A-central mean oscillation-Orlicz spaces, even for different Orlicz functions, and corresponding weak version.
引用
收藏
页码:235 / 259
页数:25
相关论文
共 41 条
[1]  
Alvarez J., 2000, Collect. Math., V51, P1
[2]   Strong and weak type inequalities for some classical operators in Orlicz spaces [J].
Cianchi, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 :187-202
[3]  
Deringoz F, 2014, OPER THEORY ADV APPL, V242, P139
[4]  
Duoandikoetxea J., 2001, Fourier Analysis
[5]  
Dyn'kin E. M., 1991, ENCYCL MATH SCI, V15, P167
[6]   λ-central BMO estimates for commutators of singular integral operators with rough kernels [J].
Fu, Zun Wei ;
Lin, Yan ;
Lu, Shan Zhen .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (03) :373-386
[7]  
GARCIACUERVA J, 1994, P LOND MATH SOC, V69, P605
[8]  
GENEBASHVILI I., 1998, WEIGHT THEORY INTEGR, V92
[9]  
GRAFAKOS L., 2008, CLASSICAL FOURIER AN
[10]  
GRECO L, 1995, INDIANA U MATH J, V44, P305