A construction of optimal constant composition codes

被引:50
作者
Ding, Cunsheng
Yin, Jianxing [1 ]
机构
[1] Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
constant composition codes; constant weight codes; resolvable designs;
D O I
10.1007/s10623-006-0004-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, a construction of optimal constant composition codes is developed, and used to derive some series of new optimal constant composition codes meeting the upper bound given by [13].
引用
收藏
页码:157 / 165
页数:9
相关论文
共 20 条
[1]  
Abel R.J.R., 1997, AUSTRALAS J COMBIN, V15, P177
[2]  
Beth T., 1999, DESIGN THEORY, V69
[3]   Error-correcting codes over an alphabet of four elements [J].
Bogdanova, GT ;
Brouwer, AE ;
Kapralov, SN ;
Östergård, PRJ .
DESIGNS CODES AND CRYPTOGRAPHY, 2001, 23 (03) :333-342
[4]  
CHU W, IN PRESS DISCRETE AP
[5]   Permutation arrays for powerline communication and mutually orthogonal Latin squares [J].
Colbourn, CJ ;
Klove, T ;
Ling, ACH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (06) :1289-1291
[6]   BOUNDS FOR PERMUTATION ARRAYS [J].
DEZA, M ;
VANSTONE, SA .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1978, 2 (02) :197-209
[7]   Combinatorial constructions of optimal constant-composition codes [J].
Ding, CS ;
Yin, JX .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (10) :3671-3674
[8]  
Dinitz, 1996, CRC HDB COMBINATORIA
[9]  
FURINO S, 1996, FRAMES RESOLVABLE DE
[10]   Existence of balanced incomplete block designs for many sets of treatments [J].
Greig, M ;
Rees, DH .
DISCRETE MATHEMATICS, 2003, 261 (1-3) :299-324