A primal-dual homotopy algorithm for -minimization with -constraints

被引:0
作者
Brauer, Christoph [1 ]
Lorenz, Dirk A. [1 ]
Tillmann, Andreas M. [2 ,3 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Anal & Algebra, Univ Pl 2, D-38106 Braunschweig, Germany
[2] Rhein Westfal TH Aachen, Visual Comp Inst, D-52056 Aachen, Germany
[3] Rhein Westfal TH Aachen, Chair Operat Res, Lehrstuhl Informat 8, D-52056 Aachen, Germany
基金
美国国家科学基金会;
关键词
Convex optimization; Dantzig selector; Homotopy methods; Nonsmooth optimization; Primal-dual methods; DANTZIG SELECTOR; LASSO;
D O I
10.1007/s10589-018-9983-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we propose a primal-dual homotopy method for -minimization problems with infinity norm constraints in the context of sparse reconstruction. The natural homotopy parameter is the value of the bound for the constraints and we show that there exists a piecewise linear solution path with finitely many break points for the primal problem and a respective piecewise constant path for the dual problem. We show that by solving a small linear program, one can jump to the next primal break point and then, solving another small linear program, a new optimal dual solution is calculated which enables the next such jump in the subsequent iteration. Using a theorem of the alternative, we show that the method never gets stuck and indeed calculates the whole path in a finite number of steps. Numerical experiments demonstrate the effectiveness of our algorithm. In many cases, our method significantly outperforms commercial LP solvers; this is possible since our approach employs a sequence of considerably simpler auxiliary linear programs that can be solved efficiently with specialized active-set strategies.
引用
收藏
页码:443 / 478
页数:36
相关论文
共 50 条
  • [41] An Inexact Modified Subgradient Algorithm for Primal-Dual Problems via Augmented Lagrangians
    Regina S. Burachik
    Alfredo N. Iusem
    Jefferson G. Melo
    Journal of Optimization Theory and Applications, 2013, 157 : 108 - 131
  • [42] On the global exponential stability of primal-dual dynamics for convex problems with linear equality constraints
    Ozaslan, Ibrahim K.
    Jovanovic, Mihailo R.
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 210 - 215
  • [43] A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging
    Chambolle, Antonin
    Pock, Thomas
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 40 (01) : 120 - 145
  • [44] Maximizing Queueing Network Utility Subject to Stability: Greedy Primal-Dual Algorithm
    Alexander L. Stolyar
    Queueing Systems, 2005, 50 : 401 - 457
  • [45] STOCHASTIC PRIMAL-DUAL HYBRID GRADIENT ALGORITHM WITH ARBITRARY SAMPLING AND IMAGING APPLICATIONS
    Chambolle, Antonin
    Ehrhardt, Matthias J.
    Richtarik, Peter
    Schonlieb, Carola-Bibiane
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (04) : 2783 - 2808
  • [46] A PRIMAL-DUAL SPLITTING ALGORITHM FOR FINDING ZEROS OF SUMS OF MAXIMAL MONOTONE OPERATORS
    Bot, Radu Ioan
    Csetnek, Erno Robert
    Heinrich, Andre
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) : 2011 - 2036
  • [47] Primal-dual subgradient method for constrained convex optimization problems
    Metel, Michael R.
    Takeda, Akiko
    OPTIMIZATION LETTERS, 2021, 15 (04) : 1491 - 1504
  • [48] Primal-dual subgradient method for constrained convex optimization problems
    Michael R. Metel
    Akiko Takeda
    Optimization Letters, 2021, 15 : 1491 - 1504
  • [49] Chambolle–Pock’s Primal-Dual Method with Mismatched Adjoint
    Dirk A. Lorenz
    Felix Schneppe
    Applied Mathematics & Optimization, 2023, 87
  • [50] Decentralized Primal-Dual Proximal Operator Algorithm for Constrained Nonsmooth Composite Optimization Problems over Networks
    Feng, Liping
    Ran, Liang
    Meng, Guoyang
    Tang, Jialong
    Ding, Wentao
    Li, Huaqing
    ENTROPY, 2022, 24 (09)