Virtual fundamental classes via dg-manifolds

被引:50
作者
Ciocan-Fontanine, Ionut [1 ]
Kapranov, Mikhail [2 ]
机构
[1] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
[2] Yale Univ, Dept Math, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
K-THEORY; SCHEMES;
D O I
10.2140/gt.2009.13.1779
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct virtual fundamental classes for dg-manifolds whose tangent sheaves have cohomology only in degrees 0 and 1. This condition is analogous to the existence of a perfect obstruction theory in the approach of Behrend and Fantechi [3] or Li and Tian [11]. Our class is initially defined in K-theory as the class of the structure sheaf of the dg-manifold. We compare our construction with that of [3] as well as with the original proposal of Kontsevich. We prove a Riemann-Roch type result for dg-manifolds which involves integration over the virtual class. We prove a localization theorem for our virtual classes. We also associate to any dg-manifold of our type a cobordism class of almost complex (smooth) manifolds. This supports the intuition that working with dg-manifolds is the correct algebro-geometric replacement of the analytic technique of "deforming to transversal intersection".
引用
收藏
页码:1779 / 1804
页数:26
相关论文
共 15 条
[1]   SCHUR FUNCTORS AND SCHUR COMPLEXES [J].
AKIN, K ;
BUCHSBAUM, DA ;
WEYMAN, J .
ADVANCES IN MATHEMATICS, 1982, 44 (03) :207-278
[2]   The intrinsic normal cone [J].
Behrend, K ;
Fantechi, B .
INVENTIONES MATHEMATICAE, 1997, 128 (01) :45-88
[3]  
BEHREND K, ARXIVMATHAG0212225
[4]  
Cartan H, 1956, Princeton Mathematics Series, V19
[5]   Derived quot schemes [J].
Ciocan-Fontanine, I ;
Kapranov, M .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2001, 34 (03) :403-440
[6]   Derived Hilbert schemes [J].
Ciocan-Fontanine, I ;
Kapranov, MM .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (04) :787-815
[7]  
FULTON W, 1984, ERGEBNISSE SERIES, V3
[8]   Localization of virtual classes [J].
Graber, T ;
Pandharipande, R .
INVENTIONES MATHEMATICAE, 1999, 135 (02) :487-518
[9]  
KONTSEVICH M, 1995, PROG MATH, V129, P335
[10]   Quantum K-theory, I:: Foundations [J].
Lee, YP .
DUKE MATHEMATICAL JOURNAL, 2004, 121 (03) :389-424