Second-order noiseless source coding theorems

被引:49
作者
Kontoyiannis, I
机构
[1] Information Systems Laboratory, Electrical Engineering Department, Stanford University, Stanford
关键词
coding variance; convergence rates; source coding theorems;
D O I
10.1109/18.605604
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Shannon's celebrated source coding theorem can be viewed as a ''one-sided law of large numbers.'' We formulate second-order noiseless source coding theorems for the deviation of the codeword lengths from the entropy. For a class of sources that includes Markov chains we prove a ''one-sided central limit theorem'' and a law of the iterated logarithm.
引用
收藏
页码:1339 / 1341
页数:3
相关论文
共 12 条
[1]  
ALGOET PH, 1985, THESIS STANFORD U ST
[2]  
Barron A. R., 1985, THESIS STANFORD U ST
[3]  
BRADLEY RC, 1986, DEPENDENCE PROBABILI, P165
[4]  
Chung K. L., 1967, MARKOV CHAINS STATIO
[5]  
Ibragimov IA., 1962, THEOR PROBAB APPL, V7, P349, DOI DOI 10.1137/1107036
[6]   SAMPLE CONVERSES IN SOURCE-CODING THEORY [J].
KIEFFER, JC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) :263-268
[7]  
KONTOYIANNIS I, 1996, 92 NSF STANF U DEP S
[8]   THE PERFORMANCE OF UNIVERSAL ENCODING [J].
KRICHEVSKY, RE ;
TROFIMOV, VK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1981, 27 (02) :199-207
[9]  
PHILLIPP W, 1975, MEMOIRS AMS, V2
[10]  
Shields PC, 1997, ANN PROBAB, V25, P329