A Novel Approach for Android Malware Detection and Classification using Convolutional Neural Networks

被引:15
作者
Lekssays, Ahmed [1 ]
Falah, Bouchaib [1 ]
Abufardeh, Sameer [2 ]
机构
[1] Al Akhawayn Univ Ifrane, Sch Sci & Engn, Ifrane, Morocco
[2] Univ Minnesota Crookston, Math Sci & Tech Dept, Crookston, MN USA
来源
ICSOFT: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGIES | 2020年
关键词
Malware; Android; Machine Learning; Classification; Convolutional Neural Networks;
D O I
10.5220/0009822906060614
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Malicious software or malware has been growing exponentially in the last decades according to antiviruses vendors. The growth of malware is due to advanced techniques that malware authors are using to evade detection. Hence, the traditional methods that antiviruses vendors deploy are insufficient in protecting people's digital lives. In this work, an attempt is made to address the problem of mobile malware detection and classification based on a new approach to android mobile applications that uses Convolutional Neural Networks (CNN). The paper suggests a static analysis method that helps in malware detection using malware visualization. In our approach, first, we convert android applications in APK format into gray-scale images. Since malware from the same family has shared patterns, we then designed a machine learning model to classify Android applications as malware or benign based on pattern recognition. The dataset used in this research is a combination of self-made datasets that used public APIs to scan the APK files downloaded from open sources on the internet, and a research dataset provided by the University of New Brunswick, Canada. Using our proposed solution, we achieved an 84.9% accuracy in detecting mobile malware.
引用
收藏
页码:606 / 614
页数:9
相关论文
共 23 条
[1]   Novel Feature Extraction, Selection and Fusion for Effective Malware Family Classification [J].
Ahmadi, Mansour ;
Ulyanov, Dmitry ;
Semenov, Stanislav ;
Trofimov, Mikhail ;
Giacinto, Giorgio .
CODASPY'16: PROCEEDINGS OF THE SIXTH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY, 2016, :183-194
[2]  
[Anonymous], 2020, Keras
[3]  
[Anonymous], 2020, Tensorflow
[4]  
[Anonymous], 2020, NumPy
[5]  
[Anonymous], 2020, Anaconda
[6]  
[Anonymous], 2020, JUPYTER P
[7]  
[Anonymous], 2020, Matplotlib
[8]  
[Anonymous], 2007, P 24 INT C MACH LEAR
[9]  
[Anonymous], 2020, Pandas
[10]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+