A GENERAL PRINCIPLE FOR HAUSDORFF MEASURE

被引:8
作者
Hussain, Mumtaz [1 ]
Simmons, David [2 ]
机构
[1] La Trobe Univ, Dept Math & Stat, POB 199, Bendigo, Vic 3552, Australia
[2] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1090/proc/14539
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a general principle for studying the Hausdorff measure of limsup sets. A consequence of this principle is the well-known Mass Transference Principle of Beresnevich and Velani (2006).
引用
收藏
页码:3897 / 3904
页数:8
相关论文
共 9 条
[1]  
Allen Demi, 2018, PREPRINT
[2]   A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures [J].
Beresnevich, Victor ;
Velani, Sanju .
ANNALS OF MATHEMATICS, 2006, 164 (03) :971-992
[3]  
Bernik V. I., 1999, Cambridge Tracts in Mathematics, DOI [10.1017/cbo9780511565991, DOI 10.1017/CBO9780511565991]
[4]   A DICHOTOMY LAW FOR THE DIOPHANTINE PROPERTIES IN β-DYNAMICAL SYSTEMS [J].
Coons, Michael ;
Hussain, Mumtaz ;
Wang, Bao-Wei .
MATHEMATIKA, 2016, 62 (03) :884-897
[5]  
Falconer, 2014, MATH FDN APPL
[6]   A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation [J].
Fan, Ai-Hua ;
Schmeling, Jorg ;
Troubetzkoy, Serge .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :1173-1219
[7]   On a problem of K. Mahler: Diophantine approximation and cantor sets [J].
Levesley, Jason ;
Salp, Cem ;
Velani, Sanju L. .
MATHEMATISCHE ANNALEN, 2007, 338 (01) :97-118
[8]   Diophantine analysis in beta-dynamical systems and Hausdorff dimensions [J].
Lu, Fan ;
Wu, Jun .
ADVANCES IN MATHEMATICS, 2016, 290 :919-937
[9]  
Mattila P., 1999, Geometry of sets and measures in Euclidean spaces: fractals and rectifiability, DOI [DOI 10.1017/CBO9780511623813, 10.1017/CBO9780511623813]