Laser powder bed fusion of compositionally graded CoCrMo-Inconel 718

被引:72
|
作者
Wen, Yaojie [1 ]
Zhang, Baicheng [1 ,2 ]
Narayan, Ramasubramanian Lakshmi [3 ]
Wang, Pei [4 ]
Song, Xu [5 ]
Zhao, Hao [6 ]
Ramamurty, Upadrasta [4 ,7 ]
Qu, Xuanhui [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Adv Mat & Technol Inst, Beijing 100083, Peoples R China
[2] Beijing Lab Metall Mat & Proc Modern Transportat, Beijing 100083, Peoples R China
[3] Indian Inst Technol Delhi, Dept Mat Sci & Engn, New Delhi 110016, India
[4] IMRE Inst Mat Res & Engn, 2 Fusionopolis Way,Innovis 08-03, Singapore 138634, Singapore
[5] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China
[6] 3DPTek Co Ltd, Beijing, Peoples R China
[7] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
Continuous functionally graded alloy; Additive manufacturing; Laser powder bed fusion; Composition; Mechanical properties; MECHANICAL-PROPERTIES; BUILD DIRECTION; STAINLESS-STEEL; HEAT-TREATMENT; MICROSTRUCTURE; ALLOY; BEHAVIOR; EVOLUTION; TI-6AL-4V; CORROSION;
D O I
10.1016/j.addma.2021.101926
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Manufacturing of compositionally graded alloys (CGAs) using powder bed based additive manufacturing (AM) techniques such as Laser powder bed fusion (LPBF) poses challenges in terms of achieving homogeneity in terms of mixing of the constituent alloys, their unintended segregation and formation of unwanted brittle phases. In this study, a novel method for LPBF of large-scale compositionally graded alloy components with continuous compositional variations across their length was devised and demonstrated by producing CoCrMo-Nickel based superalloy CGA coupons that are defect-free and with smooth end-to-end variations in the composition and microstructures. The variations in the tensile properties and hardness, measured using high throughput characterization techniques, were rationalized by recourse to the different phases present in the microstructures. The method has the potential to be extended to other material combinations for creating high quality CGA components.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Inconel 718 produced by laser powder bed fusion: an overview of the influence of processing parameters on microstructural and mechanical properties
    Marques, Ana
    Cunha, Angela
    Silva, Mariana Rodrigues
    Osendi, Maria Isabel
    Silva, Filipe Samuel
    Carvalho, Oscar
    Bartolomeu, Flavio
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 121 (9-10): : 5651 - 5675
  • [42] Optimization of built-part distortion in laser powder bed fusion processing of Inconel 718
    Chang, You-Cheng
    Tran, Hong-Chuong
    Lo, Yu-Lung
    RAPID PROTOTYPING JOURNAL, 2022, 28 (03) : 428 - 444
  • [43] Tensile Properties and Coefficient of Thermal Expansion of Laser Powder Bed Fusion Fabricated IN718-YSZ Compositionally Graded Composite
    Parnaik, Amey
    Tiwari, Jitendar Kumar
    Chakkravarthy, Vijayavarman
    Wen, Yaojie
    Zhang, Baicheng
    Narayan, Ramasubramanian Lakshmi
    ADVANCED ENGINEERING MATERIALS, 2024,
  • [44] Microstructure-property correlations in as-built and heat-treated compositionally graded stainless steel 316L-Inconel 718 alloy fabricated by laser powder bed fusion
    Wen, Yaojie
    Gao, Jianbao
    Narayan, Ramasubramanian Lakshmi
    Wang, Pei
    Zhang, Lijun
    Zhang, Baicheng
    Ramamurty, Upadrasta
    Qu, Xuanhui
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 862
  • [45] High temperature dry sliding wear behaviour of laser powder bed fused Inconel 718
    Samuel, Calvin
    Arivarasu, M.
    Prabhu, T. Ram
    ADDITIVE MANUFACTURING, 2020, 34
  • [46] Electron beam welding of rolled and laser powder bed fused Inconel 718
    Sali, Akash
    Patel, Vivek
    Hyder, James
    Hyder, David
    Corliss, Mike
    Hung, Wayne
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (7-8): : 5451 - 5468
  • [47] The creep behaviour of nickel alloy 718 manufactured by laser powder bed fusion
    Sanchez, S.
    Gaspard, G.
    Hyde, C. J.
    Ashcroft, I. A.
    Ravi, G. A.
    Clare, A. T.
    MATERIALS & DESIGN, 2021, 204
  • [48] Surface modification and mechanical properties of laser powder bed fusion Inconel 718 after magnetic-assisted laser polishing
    Wang, Yimeng
    Li, Yuhang
    Guan, Yingchun
    OPTICS AND LASER TECHNOLOGY, 2023, 162
  • [49] Hydrogen Embrittlement of Inconel 718 Manufactured by Laser Powder Bed Fusion Using Sustainable Feedstock: Effect of Heat Treatment and Microstructural Anisotropy
    Mohandas, Naveen Karuthodi
    Giorgini, Alex
    Vanazzi, Matteo
    Riemslag, Ton
    Scott, Sean Paul
    Popovich, Vera
    METALS, 2023, 13 (02)
  • [50] Tensile and Low-Cycle Fatigue Behavior of Laser Powder Bed Fused Inconel 718 at Room and High Temperature
    Sonntag, Nadja
    Piesker, Benjamin
    Calderon, Luis Alexander Avila
    Mohr, Gunther
    Rehmer, Birgit
    Jacome, Leonardo Agudo
    Hilgenberg, Kai
    Evans, Alexander
    Skrotzki, Birgit
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (10)