Decay Rates for Strong Solutions to the Compressible Navier-Stokes Equations without Heat Conductivity

被引:0
作者
Li, Weilong [1 ,2 ]
Wang, Wenjun [3 ]
Wang, Yinghui [4 ]
Yao, Lei [1 ,2 ]
机构
[1] Northwest Univ, Sch Math, Xian 710127, Peoples R China
[2] Northwest Univ, Ctr Nonlinear Studies, Xian 710127, Peoples R China
[3] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[4] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressible Navier-Stokes equations; Global existence; Time decay rates; CONVERGENCE-RATES; GLOBAL EXISTENCE; SYSTEMS; MOTION;
D O I
10.1007/s00021-021-00590-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the compressible Navier-Stokes equations without heat conductivity in R-3. The global existence and uniqueness of strong solutions are established when the initial value towards its equilibrium is sufficiently small in H-2(R-3). The key uniform bound of entropy is obtained, even though the entropy is non-dissipative due to the absence of heat conductivity. Moreover, the time decay rates of global solutions are also given.
引用
收藏
页数:24
相关论文
共 22 条
[1]  
[Anonymous], 2003, PURE APPL MATH SERIE
[2]   Optimal Time-decay Estimates for the Compressible Navier-Stokes Equations in the Critical L p Framework [J].
Danchin, Raphael ;
Xu, Jiang .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (01) :53-90
[3]   DECAY-ESTIMATES FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS IN UNBOUNDED-DOMAINS [J].
DECKELNICK, K .
MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (01) :115-130
[4]   Optimal convergence rates for the compressible Navier-Stokes equations with potential forces [J].
Duan, Renjun ;
Ukai, Seiji ;
Yang, Tong ;
Zhao, Huijiang .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (05) :737-758
[5]   Optimal Lp-Lq convergence rates for the compressible Navier-Stokes equations with potential force [J].
Duan, Renjun ;
Liu, Hongxia ;
Ukai, Seiji ;
Yang, Tong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 238 (01) :220-233
[6]   Global Existence and Convergence Rates for the 3-D Compressible Navier-Stokes Equations without Heat Conductivity [J].
Duan, Renjun ;
Ma, Hongfang .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (05) :2299-2319
[7]   Decay of Dissipative Equations and Negative Sobolev Spaces [J].
Guo, Yan ;
Wang, Yanjin .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (12) :2165-2208
[8]   Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves [J].
Hoff, D ;
Zumbrun, K .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (04) :597-614
[9]   MULTIDIMENSIONAL DIFFUSION WAVES FOR THE NAVIER-STOKES EQUATIONS OF COMPRESSIBLE FLOW [J].
HOFF, D ;
ZUMBRUN, K .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1995, 44 (02) :603-676
[10]  
Kawashima S., 1983, Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics