Sum-of-Squares Meets Program Obfuscation, Revisited

被引:13
作者
Barak, Boaz [1 ]
Hopkins, Samuel B. [2 ]
Jain, Aayush [3 ]
Kothari, Pravesh [4 ,5 ]
Sahai, Amit [3 ]
机构
[1] Harvard Univ, Cambridge, MA 02138 USA
[2] Univ Calif Berkeley, Berkeley, CA 94720 USA
[3] Univ Calif Los Angeles, Los Angeles, CA USA
[4] Princeton Univ, Princeton, NJ 08544 USA
[5] Inst Adv Study, Olden Lane, Princeton, NJ 08540 USA
来源
ADVANCES IN CRYPTOLOGY - EUROCRYPT 2019, PT I | 2019年 / 11476卷
关键词
D O I
10.1007/978-3-030-17653-2_8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop attacks on the security of variants of pseudo-random generators computed by quadratic polynomials. In particular we give a general condition for breaking the one-way property of mappings where every output is a quadratic polynomial (over the reals) of the input. As a corollary, we break the degree-2 candidates for security assumptions recently proposed for constructing indistinguishability obfuscation by Ananth, Jain and Sahai (ePrint 2018) and Agrawal (ePrint 2018). We present conjectures that would imply our attacks extend to a wider variety of instances, and in particular offer experimental evidence that they break assumption of Lin-Matt (ePrint 2018). Our algorithms use semidefinite programming, and in particular, results on low-rank recovery (Recht, Fazel, Parrilo 2007) and matrix completion (Gross 2009).
引用
收藏
页码:226 / 250
页数:25
相关论文
共 30 条
[1]   Projective Arithmetic Functional Encryption and Indistinguishability Obfuscation from Degree-5 Multilinear Maps [J].
Ananth, Prabhanjan ;
Sahai, Amit .
ADVANCES IN CRYPTOLOGY - EUROCRYPT 2017, PT I, 2017, 10210 :152-181
[2]  
Ananth Prabhanjan., 2018, IACR Cryptology ePrint Archive, V2018, P615
[3]  
[Anonymous], CRYPTANALYSIS NEW CL
[4]  
[Anonymous], 2002, P 34 ACM S THEOR COM
[5]  
[Anonymous], 2018, CRYPTOLOGY EPRINT AR
[6]  
[Anonymous], 2018, IACR CRYPTOLOGY EPRI
[7]   Limits on Low-Degree Pseudorandom Generators (Or: Sum-of-Squares Meets Program Obfuscation) [J].
Barak, Boaz ;
Brakerski, Zvika ;
Komargodski, Ilan ;
Kothari, Pravesh K. .
ADVANCES IN CRYPTOLOGY - EUROCRYPT 2018, PT II, 2018, 10821 :649-679
[8]  
Boneh D., 2014, Report 2014/930, V2014, P930
[9]  
Boneh D., 2003, Contemporary Mathematics, V324, P71, DOI DOI 10.1090/CONM/324/05731
[10]  
Brakerski Z, 2015, 2014845 CRYPT EPRINT