Monomorphisms of free Burnside groups

被引:8
|
作者
Atabekyan, V. S. [1 ]
机构
[1] Yerevan State Univ, Yerevan, Armenia
关键词
absolutely free group; free Burnside group; uniformly nonamenable group; residually finite group; 2-generated subgroup; Tarski monster; Hopfian group; UNIFORM NON-AMENABILITY; SUBGROUPS;
D O I
10.1134/S0001434609090211
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, it is proved that, for any odd n a parts per thousand yen 1039, there are words u(x, y) and upsilon(x, y) over the group alphabet {x, y} such that, if a and b are any two noncommuting elements of the free Burnside group B(m, n), then, for some k, the elements u(a (k) , b) and upsilon(a (k) , b) freely generate a free Burnside subgroup of the group B(m, n). In particular, the facts proved in the paper imply the uniform nonamenability of the group B(m, n) for odd n, n a parts per thousand yen 1039.
引用
收藏
页码:457 / 462
页数:6
相关论文
共 50 条