Theoretical Efficiency of Nanostructured Graphene-Based Photovoltaics

被引:83
作者
Yong, Virginia [1 ,2 ,3 ,4 ]
Tour, James M. [1 ,2 ,3 ,4 ]
机构
[1] Rice Univ, Dept Chem, Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA
[2] Rice Univ, Dept Comp Sci, Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA
[3] Rice Univ, Dept Mech Engn, Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA
[4] Rice Univ, Dept Mat Sci, Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA
关键词
graphene; organic photovoltaics; solar power conversion; theoretical efficiency; POLYMER SOLAR-CELLS; EPITAXIAL GRAPHENE; CARBON NANOTUBES; NANORIBBONS; DEVICES; FILMS; SEMICONDUCTORS; LAYER; OXIDE;
D O I
10.1002/smll.200901364
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene-based organic photovoltaics (OPVs) have the potential for single-cell efficiencies exceeding 12% (and 24% in a stacked structure). A generalized equivalent circuit for OPVs is proposed and the validation of the proposed models is verified by simulation. The simulated short-circuit photocurrent density (computed using the simulated incident photon flux density and quantum yield), simulated current-voltage curve, and simulated 3D surface and 2D contour plots of solar-power-con version efficiency versus carrier mobility and photoactive layer thickness are in good agreement with experimental observations. The results suggest that graphene renders a credible material for the construction of next-generation flexible solar-energy-con version devices that are low-cost, high-efficiency, thermally stable, environmentally friendly, and lightweight.
引用
收藏
页码:313 / 318
页数:6
相关论文
共 52 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]  
Barsoukov E, 2005, IMPEDANCE SPECTROSCOPY: THEORY, EXPERIMENT, AND APPLICATIONS, 2ND EDITION, pXII
[3]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[4]   Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time [J].
Brabec, CJ ;
Zerza, G ;
Cerullo, G ;
De Silvestri, S ;
Luzzati, S ;
Hummelen, JC ;
Sariciftci, S .
CHEMICAL PHYSICS LETTERS, 2001, 340 (3-4) :232-236
[5]   Edge-functionalized and substitutionally doped graphene nanoribbons:: Electronic and spin properties [J].
Cervantes-Sodi, F. ;
Csanyi, G. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2008, 77 (16)
[6]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   Theoretical analysis and numerical simulation of intramolecular barriers in polyphenyl-based molecular devices [J].
Girlanda, M ;
Macucci, M .
JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (05) :706-711
[9]   Unconventional Quasiparticle Lifetime in Graphene [J].
Gonzalez, J. ;
Perfetto, E. .
PHYSICAL REVIEW LETTERS, 2008, 101 (17)
[10]   Organic solar cells: An overview [J].
Hoppe, H ;
Sariciftci, NS .
JOURNAL OF MATERIALS RESEARCH, 2004, 19 (07) :1924-1945