How Should Microrobots Swim?

被引:506
作者
Abbott, Jake J. [1 ,2 ]
Peyer, Kathrin E. [1 ]
Lagomarsino, Marco Cosentino [3 ]
Zhang, Li [1 ]
Dong, Lixin [1 ,4 ]
Kaliakatsos, Ioannis K. [1 ]
Nelson, Bradley J. [1 ]
机构
[1] ETH, Inst Robot & Intelligent Syst, CH-8092 Zurich, Switzerland
[2] Univ Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA
[3] Univ Milan, Dept Phys, I-20133 Milan, Italy
[4] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
关键词
microrobot; magnetic; wireless; untethered; medical; in vivo; MAGNETIC STEREOTAXIS; PROPULSION; DYNAMICS; MANIPULATION; FABRICATION;
D O I
10.1177/0278364909341658
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Microrobots have the potential to dramatically change many aspects of medicine by navigating through bodily fluids to perform targeted diagnosis and therapy. Researchers have proposed numerous micro-robotic swimming methods, with the vast majority utilizing magnetic fields to wirelessly power and control the microrobot. In this paper, we compare three promising methods of microrobot swimming (using magnetic fields to rotate helical propellers that mimic bacterial flagella, using magnetic fields to oscillate a magnetic head with a rigidly attached elastic tail, and pulling directly with magnetic field gradients) considering practical hardware limitations in the generation of magnetic fields. We find that helical propellers and elastic tails have very comparable performance, and they generally become more desirable than gradient pulling as size decreases and as distance from the magnetic-field-generation source increases. We provide a discussion of why helical propellers are likely the best overall choice for in vivo applications.
引用
收藏
页码:1434 / 1447
页数:14
相关论文
共 36 条
  • [1] Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies
    Abbott, Jake J.
    Ergeneman, Olgac
    Kummer, Michael P.
    Hirt, Ann M.
    Nelson, Bradley J.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2007, 23 (06) : 1247 - 1252
  • [2] BEHKAM B, 2006, ASME, V128, P36
  • [3] Flagella-like propulsion for microrobots using a nanocoil and a rotating electromagnetic field
    Bell, D. J.
    Leutenegger, S.
    Hammar, K. M.
    Dong, L. X.
    Nelson, B. J.
    [J]. PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-10, 2007, : 1128 - +
  • [4] Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings
    Bell, DJ
    Dong, LX
    Nelson, BJ
    Golling, M
    Zhang, L
    Grützmacher, D
    [J]. NANO LETTERS, 2006, 6 (04) : 725 - 729
  • [5] BRENNEN C, 1977, ANNU REV FLUID MECH, V9, P339, DOI 10.1146/annurev.fl.09.010177.002011
  • [6] A simulation study of the dynamics of a driven filament in an Aristotelian fluid
    Cosentino Lagomarsino, M
    Capuani, F
    Lowe, CP
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2003, 224 (02) : 215 - 224
  • [7] Microscopic artificial swimmers
    Dreyfus, R
    Baudry, J
    Roper, ML
    Fermigier, M
    Stone, HA
    Bibette, J
    [J]. NATURE, 2005, 437 (7060) : 862 - 865
  • [8] A magnetically controlled wireless optical oxygen sensor for intraocular measurements
    Ergeneman, Olgac
    Dogangil, Gorkem
    Kummer, Michael P.
    Abbott, Jake J.
    Nazeeruddin, Mohammad K.
    Nelson, Bradley J.
    [J]. IEEE SENSORS JOURNAL, 2008, 8 (1-2) : 29 - 37
  • [9] NONLINEAR MAGNETIC STEREOTAXIS - 3-DIMENSIONAL, INVIVO REMOTE MAGNETIC MANIPULATION OF A SMALL OBJECT IN CANINE BRAIN
    GRADY, MS
    HOWARD, MA
    MOLLOY, JA
    RITTER, RC
    QUATE, EG
    GILLIES, GT
    [J]. MEDICAL PHYSICS, 1990, 17 (03) : 405 - 415
  • [10] Development of a novel type of microrobot for biomedical application
    Guo, Shuxiang
    Pan, Qinxue
    Khamesee, Mir Behrad
    [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2008, 14 (03): : 307 - 314