Enhanced biogas production and in situ ammonia recovery from food waste using a gas-membrane absorption anaerobic reactor

被引:28
作者
Shi, Xuchuan [1 ,2 ,3 ,4 ]
Zuo, Jiane [1 ]
Zhang, Mengyu [5 ]
Wang, Yajiao [1 ]
Yu, Heng [1 ]
Li, Bing [3 ,4 ]
机构
[1] Tsinghua Univ, Sch Environm, Beijing, Peoples R China
[2] Tsinghua Berkeley Shenzhen Inst, Shenzhen, Peoples R China
[3] Tsinghua Univ, Shenzhen Engn Res Lab Sludge & Food Waste Treatme, Grad Sch Shenzhen, Shenzhen, Peoples R China
[4] Tsinghua Univ, Guangdong Prov Engn Res Ctr Urban Water Recycling, Grad Sch Shenzhen, Shenzhen, Peoples R China
[5] China Urban Construct Design & Res Inst Co Ltd, Beijing, Peoples R China
关键词
Food waste; Anaerobic digestion; Gas permeable membrane; Ammonia recovery; Membrane fouling; SWINE MANURE; DIGESTION PROCESS; INHIBITION; REMOVAL; COMMUNITIES; PERFORMANCE; MECHANISMS; ACIDS;
D O I
10.1016/j.biortech.2019.121864
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
A novel GAs-Membrane Absorption anaerobic Reactor (GAMAR) was developed by combining gas-membrane absorption system with anaerobic digestion. A gas-permeable expanded polytetrafluoroethylene (ePTFE) membrane was submerged in the anaerobic reactor. Free ammonia could transfer through the gas-permeable membrane and be recovered by acidic solution. The free ammonia concentration was lower than 40 mgN L-1 in GAMAR, which alleviated ammonia inhibition. Meanwhile free ammonia concentration up 70 mgN L-1 in the reference reactor inhibited methanogens and led to unstable operation. The volumetric biogas production rate of GAMAR was 2.83 m(3) m(-3) d(-1), and 58% higher than the reference reactor. Long term use of membrane led to membrane fouling and hydrophobicity loss. The contact angle of membrane decreased from 105.9 +/- 1.2 degrees to 97.6 +/- 6.3 degrees after 43 d. The abundance of methanogens in GAMAR was 1.8-2.1 times higher than that in the reference reactor, which was in accordance with the higher biogas production rate in GAMAR.
引用
收藏
页数:8
相关论文
共 43 条
[1]  
[Anonymous], 2005, STAND METH EX WAT SE
[2]   Dry anaerobic digestion of chicken manure coupled with membrane separation of ammonia [J].
Bayrakdar, Alper ;
Surmeli, Recep Onder ;
Calli, Baris .
BIORESOURCE TECHNOLOGY, 2017, 244 :816-823
[3]   State indicators for monitoring the anaerobic digestion process [J].
Boe, Kanokwan ;
Batstone, Damien John ;
Steyer, Jean-Philippe ;
Angelidaki, Irini .
WATER RESEARCH, 2010, 44 (20) :5973-5980
[4]   Anaerobic bioconversion of food waste into energy: A critical review [J].
Braguglia, Camilla M. ;
Gallipoli, Agata ;
Gianico, Andrea ;
Pagliaccia, Pamela .
BIORESOURCE TECHNOLOGY, 2018, 248 :37-56
[5]   Inhibition of anaerobic digestion process: A review [J].
Chen, Ye ;
Cheng, Jay J. ;
Creamer, Kurt S. .
BIORESOURCE TECHNOLOGY, 2008, 99 (10) :4044-4064
[6]   A review of global strategies promoting the conversion of food waste to bioenergy via anaerobic digestion [J].
De Clercq, Djavan ;
Wen, Zongguo ;
Gottfried, Oliver ;
Schmidt, Franziska ;
Fei, Fan .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 79 :204-221
[7]   Electrochemical Nutrient Recovery Enables Ammonia Toxicity Control and Biogas Desulfurization in Anaerobic Digestion [J].
Desloover, Joachim ;
De Vrieze, Jo ;
de Vijver, Maarten Van ;
Mortelmans, Jacky ;
Rozendal, Rene ;
Rabaey, Korneel .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (02) :948-955
[8]   Membrane distillation: Recent developments and perspectives [J].
Drioli, Enrico ;
Ali, Aamer ;
Macedonio, Francesca .
DESALINATION, 2015, 356 :56-84
[9]   Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology [J].
Dube, P. J. ;
Vanotti, M. B. ;
Szogi, A. A. ;
Garcia-Gonzalez, M. C. .
WASTE MANAGEMENT, 2016, 49 :372-377
[10]   Bioaugmentation as a Solution To Increase Methane Production from an Ammonia-Rich Substrate [J].
Fotidis, Ioannis A. ;
Wang, Han ;
Fiedel, Nicolai R. ;
Luo, Gang ;
Karakashev, Dimitar B. ;
Angelidaki, Irini .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (13) :7669-7676