Pyridinic-N-Doped Graphene Paper from Perforated Graphene Oxide for Efficient Oxygen Reduction

被引:44
作者
Bang, Gyeong Sook [1 ]
Shim, Gi Woong [1 ]
Shin, Gwang Hyuk [1 ]
Jung, Dae Yool [1 ]
Park, Hamin [1 ]
Hong, Won G. [2 ]
Choi, Jinseong [3 ]
Lee, Jaeseung [3 ]
Choi, Sung-Yool [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Graphene Mat Res Ctr 2D, Sch Elect Engn, Daejeon 34141, South Korea
[2] Korea Basic Sci Inst, Electron Microscopy Res Ctr, Daejeon 34133, South Korea
[3] Hyundai Motor Co, Fuel Cell Technol Dev Team, Yongin 16891, South Korea
关键词
NITROGEN; ELECTROCATALYST; CATALYST; NANORIBBONS; PERFORMANCE; CHALLENGES; CONVERSION; NANOSHEETS; NANOTUBES; BATTERIES;
D O I
10.1021/acsomega.8b00400
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a simple approach to fabricate a pyridinic-N-doped graphene film (N-pGF) without high-temperature heat treatment from perforated graphene oxide (pGO). pGO is produced by a short etching treatment with hydrogen peroxide. GO perforation predominated in a short etching time (similar to 1 h), inducing larger holes and defects compared to pristine GO. The pGO is advantageous to the formation of a pyridinic N-doped graphene because of strong NH3 adsorption on vacancies with oxygen functional groups during the nitrogen-doping process, and the pyridinic-N-doped graphene exhibits good electrocatalytic activity for oxygen reduction reaction (ORR). Using rotating-disk electrode measurements, we confirm that N-pGF undergoes a four-electron-transfer process during the ORR in alkaline and acidic media by possessing sufficient diffusion pathways and readily available ORR active sites for efficient mass transport. A comparison between Pt/N-pGF and commercial Pt/C shows that Pt/N-pGF has superior performance, based on its more positive onset potential and higher limiting diffusion current at -0.5 V.
引用
收藏
页码:5522 / 5530
页数:9
相关论文
共 38 条
[1]   Three-Dimensional Nitrogen-Doped Graphene Nanoribbons Aerogel as a Highly Effi cient Catalyst for the Oxygen Reduction Reaction [J].
Chen, Liang ;
Du, Ran ;
Zhu, Jinghan ;
Mao, Yueyuan ;
Xue, Cheng ;
Zhang, Na ;
Hou, Yanglong ;
Zhang, Jin ;
Yi, Tao .
SMALL, 2015, 11 (12) :1423-1429
[2]   Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts [J].
Cheng, Fangyi ;
Chen, Jun .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) :2172-2192
[3]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[4]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[5]   Space-Confinement-Induced Synthesis of Pyridinic- and Pyrrolic-Nitrogen-Doped Graphene for the Catalysis of Oxygen Reduction [J].
Ding, Wei ;
Wei, Zidong ;
Chen, Siguo ;
Qi, Xueqiang ;
Yang, Tao ;
Hu, Jinsong ;
Wang, Dong ;
Wan, Li-Jun ;
Alvi, Shahnaz Fatima ;
Li, Li .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (45) :11755-11759
[6]   Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes [J].
Duan, Jingjing ;
Chen, Sheng ;
Jaroniec, Mietek ;
Qiao, Shi Zhang .
ACS CATALYSIS, 2015, 5 (09) :5207-5234
[7]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764
[8]   A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts [J].
Gong, Ming ;
Dai, Hongjie .
NANO RESEARCH, 2015, 8 (01) :23-39
[9]   A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation [J].
Gorlin, Yelena ;
Jaramillo, Thomas F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (39) :13612-13614
[10]   The Lithium/Air Battery: Still an Emerging System or a Practical Reality? [J].
Grande, Lorenzo ;
Paillard, Elie ;
Hassoun, Jusef ;
Park, Jin-Bum ;
Lee, Yung-Jung ;
Sun, Yang-Kook ;
Passerini, Stefano ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2015, 27 (05) :784-800